Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 3: Geometric Sequences

2006

4 (b) The sum to infinity of a geometric series is $\frac{9}{2}$. The second term of the series is -2 . Find the vaue of r, the common ratio of the series.

Solution

$S_{\infty}=\frac{9}{2}, a r=-2$

$$
\begin{equation*}
S_{\infty}=\frac{a}{1-r},-1<r<1 \tag{6}
\end{equation*}
$$

$S_{\infty}=\frac{a}{1-r}=\frac{9}{2} \Rightarrow 2 a=9-9 r$
$a r=-2 \Rightarrow a=-\frac{2}{r}$
Substituting equation (2) into equation (1):
$-\frac{4}{r}=9-9 r \Rightarrow-4=9 r-9 r^{2} \Rightarrow 9 r^{2}-9 r-4=0$
$\Rightarrow(3 r-4)(3 r+1)=0 \Rightarrow r=-\frac{1}{3}, \frac{4}{3}$
$r=-\frac{1}{3}$ is the only solution as the sum to infinity formula only applies to values of r between -1 and 1.

4 (c) The sequence $u_{1}, u_{2}, u_{3}, \ldots$, defined by $u_{1}=3$ and $u_{n+1}=2 u_{n}+3$, is as follows: $3,9,21,45,93, \ldots$.
(i) Find u_{6}, and verify that it is equal to the sum of the first six terms of a geometric series with first term 3 and common ratio 2 .
(ii) Given that, for all k, u_{k} is the sum of the first k terms of a geometric series with first term 3 and common ratio 2 , find $\sum_{k=1}^{n} u_{k}$.

Solution

4 (c) (i)
$u_{n+1}=2 u_{n}+3 \Rightarrow u_{6}=2 u_{5}+3=2(93)+5=189$
Geometric Series: $a=3, r=2, n=6$
Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \ldots \ldots$.
$S_{6}=\frac{3\left(1-2^{6}\right)}{1-2}=-3(1-64)=-3(-63)=189$

4 (c) (ii)

$u_{k}=\frac{3\left(1-2^{k}\right)}{1-2}=3\left(2^{k}-1\right)=3\left(2^{k}\right)-3$
To evaluate $\sum_{k=1}^{n} u_{k}$ set out a sum table.
$\therefore \sum_{k=1}^{n} u_{k}=3\left(2+2^{2}+2^{3}+\ldots . .+2^{n}\right)-3 n$
Inside the bracket, you have a geometric series with $a=2$ and $r=2$.
$\Rightarrow \sum_{k=1}^{n} u_{k}=3\left(\frac{2\left(1-2^{n}\right)}{1-2}\right)-3 n$
$\Rightarrow \sum_{k=1}^{n} u_{k}=6\left(2^{n}-1\right)-3 n$

2004

5 (b) (i) In a geometric series, the second term is 8 and the fifth term is 27 . Find the first term and the common ratio.

Solution

$$
\begin{aligned}
& \frac{a r^{4}=27}{a r=8} \Rightarrow r^{3}=\frac{27}{8} \Rightarrow r=\frac{3}{2} \\
& a r=8 \Rightarrow a\left(\frac{3}{2}\right)=8 \Rightarrow a=\frac{16}{3}
\end{aligned}
$$

The forty-third term of a geometric sequence is written as $u_{43}=a r^{42}$

2002

4 (a) Find in terms of n, the sum of the first n terms of the geometric series $3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\ldots$

Solution

4 (a)
$a=3, r=\frac{1}{2}$

$$
\text { Summing formula: } S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

$\therefore S_{n}=\frac{3\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=6\left(1-\left(\frac{1}{2}\right)^{n}\right)$

2001

5 (a) The second term, u_{2}, of a geometric sequence is 21 . The third term, u_{3}, is -63 . Find
(i) the common ratio
(ii) the first term.

Solution

5 (a) (i)
$u_{3}=a r^{2}=-63$
$u_{2}=a r=21$

The forty-third term of a geometric sequence is written as $u_{43}=a r^{42}$

5 (a) (ii)

$a r=21 \Rightarrow a=\frac{21}{r}=\frac{21}{-3}=-7$

2005

4 (a) Write the recurring decimal $0 \cdot 636363 . \ldots$. as an infinite geometric series and hence as a fraction.
Solution
4 (a)
$0 \cdot 636363 . . .=\frac{63}{100}+\frac{63}{10000}+\frac{63}{100000}+\ldots=63\left(\frac{1}{100}+\frac{1}{10000}+\frac{1}{1000000}+\ldots\right)$
Infinite geometric series: $a=\frac{1}{100}, r=\frac{1}{100}$
$S_{\infty}=\frac{a}{1-r}=\frac{\frac{1}{100}}{1-\frac{1}{100}}=\frac{\frac{1}{100}}{\frac{99}{100}}=\frac{1}{99}$
$\therefore 0 \cdot 636363 \ldots=63\left(\frac{1}{99}\right)=\frac{63}{99}$

2003

4 (a) Express the recurring decimal $0.252525 \ldots$ in the form $\frac{p}{q}$ where $p, q \in \mathbf{N}$ and $q \neq 0$.
Solution
4 (a)
$0 \cdot 252525 \ldots=\frac{25}{100}+\frac{25}{10000}+\frac{25}{1000000}+\ldots=25\left(\frac{1}{100}+\frac{1}{10000}+\frac{1}{1000000}+\ldots\right)$
Infinite geometric series: $a=\frac{1}{100}, r=\frac{1}{100}$
$S_{\infty}=\frac{a}{1-r}=\frac{\frac{1}{100}}{1-\frac{1}{100}}=\frac{\frac{1}{100}}{\frac{99}{100}}=\frac{1}{99}$
$\therefore 0 \cdot 252525 \ldots=25\left(\frac{1}{99}\right)=\frac{25}{99}$

