SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

LESSON NO. 3: GEOMETRIC SEQUENCES

2006

4 (b) The sum to infinity of a geometric series is $\frac{9}{2}$. The second term of the series is -2. Find the vaue of *r*, the common ratio of the series.

SOLUTION

$$S_{\infty} = \frac{9}{2}, ar = -2$$

$$S_{\infty} = \frac{a}{1-r} = \frac{9}{2} \Longrightarrow 2a = 9 - 9r \dots (1)$$

$$ar = -2 \Longrightarrow a = -\frac{2}{r} \dots (2)$$
Substituting equation (2) into equation (1):
$$-\frac{4}{r} = 9 - 9r \Longrightarrow -4 = 9r - 9r^2 \Longrightarrow 9r^2 - 9r - 4 = 0$$

$$\Longrightarrow (3r - 4)(3r + 1) = 0 \Longrightarrow r = -\frac{1}{3}, \frac{4}{3}$$

 $r = -\frac{1}{3}$ is the only solution as the sum to infinity formula only applies to values of *r* between -1 and 1.

- 4 (c) The sequence $u_1, u_2, u_3, ...,$ defined by $u_1 = 3$ and $u_{n+1} = 2u_n + 3$, is as follows: 3, 9, 21, 45, 93,
 - (i) Find u_6 , and verify that it is equal to the sum of the first six terms of a geometric series with first term 3 and common ratio 2.
 - (ii) Given that, for all k, u_k is the sum of the first k terms of a geometric series with

first term 3 and common ratio 2, find $\sum_{k=1}^{n} u_k$.

SOLUTION

4 (c) (i)

 $u_{n+1} = 2u_n + 3 \Rightarrow u_6 = 2u_5 + 3 = 2(93) + 5 = 189$ Summing formula: $S_n = \frac{a(1-r^n)}{(1-r)}$ 5 Geometric Series: a = 3, r = 2, n = 6

$$S_6 = \frac{3(1-2^6)}{1-2} = -3(1-64) = -3(-63) = 189$$

Солт...

4 (c) (ii)

$$u_{k} = \frac{3(1-2^{k})}{1-2} = 3(2^{k}-1) = 3(2^{k}) - 3$$

To evaluate $\sum_{k=1}^{n} u_k$ set out a sum table.

$$\therefore \sum_{k=1}^{n} u_{k} = 3(2+2^{2}+2^{3}+\ldots+2^{n})-3n$$

Inside the bracket, you have a geometric series with a = 2 and r = 2.

$$\Rightarrow \sum_{k=1}^{n} u_k = 3\left(\frac{2(1-2^n)}{1-2}\right) - 3n$$
$$\Rightarrow \sum_{k=1}^{n} u_k = 6(2^n - 1) - 3n$$

Sum TABLE

$$k = 1: 3(2) - 3$$

 $k = 2: 3(2^2) - 3$
 $k = 3: 3(2^3) - 3$
 a
 b
 $k = n - 1: 3(2^{n-1}) - 3$
 $k = n: 3(2^n) - 3$
Summing formula:
 $S_n = \frac{a(1 - r^n)}{(1 - r)}$

2004

5 (b) (i) In a geometric series, the second term is 8 and the fifth term is 27. Find the first term and the common ratio.

SOLUTION

 $\frac{ar^4 = 27}{ar = 8} \implies r^3 = \frac{27}{8} \implies r = \frac{3}{2}$ $ar = 8 \implies a(\frac{3}{2}) = 8 \implies a = \frac{16}{3}$

The forty-third term of a geometric sequence is written as
$$u_{43} = ar^{42}$$

2002

4 (a) Find in terms of *n*, the sum of the first *n* terms of the geometric series $3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$

SOLUTION

4 (a)

$$a = 3, r = \frac{1}{2}$$
 Summing formula: $S_n = \frac{a(1-r^n)}{(1-r)}$ 5
 $\therefore S_n = \frac{3(1-(\frac{1}{2})^n)}{1-\frac{1}{2}} = 6(1-(\frac{1}{2})^n)$

2005

4 (a) Write the recurring decimal 0.636363.... as an infinite geometric series and hence as a fraction.

SOLUTION

4 (a)

Infinite geometric series: $a = \frac{1}{100}$, $r = \frac{1}{100}$

$$S_{\infty} = \frac{a}{1-r} = \frac{\frac{1}{100}}{1-\frac{1}{100}} = \frac{\frac{1}{100}}{\frac{99}{100}} = \frac{1}{99}$$

$$\therefore 0.636363.... = 63(\frac{1}{99}) = \frac{63}{99}$$

2003

4 (a) Express the recurring decimal 0.252525... in the form $\frac{p}{q}$ where $p, q \in \mathbb{N}$ and $q \neq 0$. **SOLUTION** 4 (a) $0 \cdot 252525... = \frac{25}{100} + \frac{25}{10000} + \frac{25}{1000000} + ... = 25(\frac{1}{100} + \frac{1}{10000} + \frac{1}{100000} + ...)$ Infinite geometric series: $a = \frac{1}{100}, r = \frac{1}{100}$ $S_{\infty} = \frac{a}{1-r} = \frac{1}{100} = \frac{1}{100} = \frac{1}{99}$ $\therefore 0 \cdot 252525.... = 25(\frac{1}{99}) = \frac{25}{99}$