Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 2: Arithmetic Sequences

2006

4 (a) $-2+2+6+\ldots+(4 n-6)$ are the first n terms of an arithmetic series. S_{n}, the sum of these n terms, is 160 . Find the value of n.

Solution

4 (a)
$a=-2, d=4, S_{n}=160$
Summing formula: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
3
$\Rightarrow S_{n}=\frac{n}{2}[2(-2)+(n-1)(4)]=160$
$\Rightarrow \frac{n}{2}[4 n-8]=160 \Rightarrow n(2 n-4)=160 \Rightarrow 2 n^{2}-4 n-160=0$
$\Rightarrow n^{2}-2 n-80=0 \Rightarrow(n-10)(n+8)=0 \Rightarrow n=10,-8$
Answer: $n=10$

2003

4 (b) In an arithmetic series, the sum of the second term and the fifth term is 18 . The sixth term is greater than the third term by 9 .
(i) Find the first term and the common difference.
(ii) What is the smallest value of n such that $S_{n}>600$, where S_{n} is the sum of the first n terms of the series?

Solution

4 (b) (i)
$u_{2}=a+d$
$u_{3}=a+2 d$
$u_{5}=a+4 d$
$u_{6}=a+5 d$
General term: $u_{n}=a+(n-1) d \ldots . . .2$
Summing formula: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
3
The fifty-sixth term of an arithmetic sequence: $u_{56}=a+55 d$
$u_{2}+u_{5}=18 \Rightarrow a+d+a+4 d=18 \Rightarrow 2 a+5 d=18 \ldots . .(\mathbf{1})$
$u_{6}=u_{3}+9 \Rightarrow a+5 d=a+2 d+9 \Rightarrow 3 d=9 \Rightarrow d=3$..

Substituting the value for d into equation (2): $\Rightarrow 2 a+5(3)=18 \Rightarrow 2 a=3 \Rightarrow a=\frac{3}{2}$
4 (b) (ii)
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=600 \Rightarrow \frac{n}{2}\left[2\left(\frac{3}{2}\right)+(n-1)(3)\right]=600$
$\Rightarrow \frac{n}{2}[3+3 n-3]=600 \Rightarrow 3 n^{2}=1200 \Rightarrow n^{2}=400 \Rightarrow n=20$
The question asks what is the smallest value of n for the sum to exceed 600. 21 terms are needed to exceed this value.
Answer: $n=21$

2002

4 (c) Three numbers are in arithmetic sequence. Their sum is 27 and their product is 704. Find the three numbers.

Solution

Call the numbers $a-d, a, a+d$

If you are asked to choose three consecutive terms in an arithmetic sequence choose them as: $a-d, a, a+d$

Sum: $3 a=27 \Rightarrow a=9$
Product: $(a-d) a(a+d)=704 \Rightarrow(9-d) 9(9+d)=704$
$\Rightarrow 81-d^{2}=\frac{704}{9} \Rightarrow d^{2}=81-\frac{704}{9}=\frac{25}{9} \Rightarrow d= \pm \frac{5}{3}$
Therefore, the 3 numbers are: $a-d, a, a+d=9-\frac{5}{3}, 9,9+\frac{5}{3}=\frac{22}{3}, 9, \frac{32}{3}$
Note: There are two values of d. Choosing either value gives you the same three numbers in a different order.

