Sequences \& Series (Q 4 \& 5, Paper 1)

2007

4 (a) Show that $\binom{n}{1}+\binom{n}{2}=\binom{n+1}{2}$ for all natural numbers $n \geq 2$.
(b) $u_{1}=5$ and $u_{n+1}=\frac{n}{n+1} u_{n}$ for all $n \geq 1, n \in \mathbf{N}$.
(i) Write down the value of each of u_{2}, u_{3}, and u_{4}.
(ii) Hence, by inspection, write an expression for u_{n} in terms of n.
(iii) Use induction to justify your answer for part (ii).
(c) The sum of the first n terms of a series is given by $S_{n}=n^{2} \log _{e} 3$.
(i) Find the $n^{\text {th }}$ term and prove that the series is arithmetic.
(ii) How many of the terms of the series are less than $12 \log _{e} 27$?

Solution

4 (a)
LHS
$\binom{n}{1}+\binom{n}{2}$
RHS
$\binom{n+1}{2}=\frac{(n+1) n}{2}$
$=n+\frac{n(n-1)}{2}=\frac{2 n+n^{2}-n}{2}$
$=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2}$

4 (b) (i)

Put $n=1$: $u_{2}=\frac{1}{2} u_{1}=\frac{1}{2} \times 5=\frac{5}{2}$
Put $n=2: u_{3}=\frac{2}{3} u_{2}=\frac{2}{3} \times \frac{5}{2}=\frac{5}{3}$
Put $n=3: u_{4}=\frac{3}{4} u_{3}=\frac{3}{4} \times \frac{5}{3}=\frac{5}{4}$

4 (b) (ii)

Sequence: $5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \ldots . ., \frac{5}{n}$
By inspection, it is seen that $u_{n}=\frac{5}{n}$

4 (b) (iii)

Steps

1. Prove result is true for some starting value of $n \in \mathbf{N}_{0}$.
2. Assuming result is true for $n=k$.
3. Prove result is true for $n=(k+1)$.

The sequence is $5, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}$, \qquad
The general term is assumed to be $u_{n}=\frac{5}{n}$ by inspection.

1. Prove for $n=1: u_{1}=\frac{5}{1}=5$ (True for $n=1$)
2. Assume for $n=k: u_{k}=\frac{5}{k}$
3. Prove for $n=k+1$: $u_{k+1}=\frac{5}{k+1}$

From step 2: $5=k u_{k} \Rightarrow u_{k+1}=\frac{k u_{k}}{k+1}=\frac{k}{k+1} \times \frac{5}{k}=\frac{5}{k+1}$ (True for $n=k+1$)
Therefore, it is true for $n=k \Rightarrow$ true for $n=k+1$.
So true for $n=1$ and true for $n=k \Rightarrow$ true for $n=k+1 \Rightarrow$ true for all $n \in \mathbf{N}_{0}$.

4 (c) (i)

$S_{n}=n^{2} \ln 3$
$S_{n-1}=(n-1)^{2} \ln 3$

$$
u_{n}=S_{n}-S_{n-1}
$$

$\therefore u_{n}=S_{n}-S_{n-1}=n^{2} \ln 3-(n-1)^{2} \ln 3$
$=n^{2} \ln 3-n^{2} \ln 3+2 n \ln 3-\ln 3$
$\therefore u_{n}=(2 n-1) \ln 3$

Test for an arithmetic sequence: $u_{n+1}-u_{n}=$ Constant $=d$
$\therefore u_{n+1}-u_{n}=(2 n+1) \ln 3-(2 n-1) \ln 3=2 n \ln 3+\ln 3-2 n \ln 3+\ln 3$
$=2 \ln 3$ (Constant)

4 (c) (ii)

Set the general term equal to $12 \ln 27$.
$\therefore(2 n-1) \ln 3=12 \ln 27 \Rightarrow(2 n-1)=\frac{12 \ln 27}{\ln 3}=12 \frac{\log _{e} 27}{\log _{e} 3}$

Use to change base:
$\log _{a} M=\frac{\log _{b} M}{\log _{b} a}$
$\Rightarrow(2 n-1)=12 \log _{3} 27=12 \times 3=36$
$\Rightarrow 2 n=37 \Rightarrow n=18 \cdot 5$
Therefore, there are 18 terms less than $12 \ln 27$.

5 (a) Plot, on the number line, the values of x that satisfy the inequality $|x+1| \leq 2$, where $x \in \mathbf{Z}$.
(b) In the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{9}$,
(i) find the general term
(ii) find the value of the term independent of x.
(c) The $n^{\text {th }}$ term of a series is given by $n x^{n}$, where $|x|<1$.
(i) Find an expression for S_{n}, the sum of the first n terms of the series.
(ii) Hence, find the sum to infinity of the series.

Solution

5 (a)
Modulus $|a x+b|>c$
Steps

1. Solve the corresponding modulus equality.
2. Do region test on roots in ascending order on Test Box.
3. Based on the region test write down the solutions.
4. Solve $|x+1|=2 \Rightarrow x+1= \pm 2 \Rightarrow x=-3,1$
5. Region Test on $|x+1| \leq 2$.....Test Box

6. $\therefore-3 \leq x \leq 1$

5 (b) (i)
$u_{r+1}=\binom{9}{r}(2 x)^{9-r}\left(-\frac{1}{x}\right)^{r}$

$$
\begin{equation*}
u_{r+1}={ }^{n} C_{r}(x)^{n-r}(y)^{r}=\binom{n}{r}(x)^{n-r}(y)^{r} \tag{10}
\end{equation*}
$$

5 (b) (ii)
$u_{r+1}=\binom{9}{r}(2 x)^{9-r}\left(-\frac{1}{x^{2}}\right)^{r} \Rightarrow u_{r+1}=(-1)^{r}\binom{9}{r} 2^{9-r} \frac{x^{9-r}}{x^{2 r}}=(-1)^{r}\binom{9}{r} 2^{9-r} x^{9-3 r}$
Independent term: $9-3 r=0 \Rightarrow r=3$
$\therefore u_{4}=(-1)^{3}\binom{9}{3} 2^{6} \frac{x^{6}}{x^{6}}=(-1) \times 84 \times 64=-5376$

5 (c) (i)

$u_{n}=n x^{n} \Rightarrow S_{n}=x+2 x^{2}+3 x^{2}+\ldots .+n x^{n}$
$S_{n}=x+2 x^{2}+3 x^{3}+\ldots .+(n-1) x^{n-1}+n x^{n}$
$x S_{n}=x^{2}+2 x^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+(n-1) x^{n}+n x^{n+1}$
$S_{n}-x S_{n}=x+x^{2}+x^{3}+\ldots . . x^{n}-n x^{n+1}$
$(1-x) S_{n}=\left[x+x^{2}+x^{3}+\ldots . . x^{n}\right]-n x^{n+1}$
The expression in the square brackets in a geometric series with $a=x$ and $r=x$.

Summing formula:
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
The sum of these terms,
$\operatorname{Sum}_{n}=\frac{x\left(1-x^{n}\right)}{1-x}$
$\Rightarrow(1-x) S_{n}=\frac{x\left(1-x^{n}\right)}{1-x}-n x^{n+1} \Rightarrow S_{n}=\frac{x\left(1-x^{n}\right)}{(1-x)^{2}}-\frac{n x^{n+1}}{(1-x)}$

Editor's note: This is an artithmetic geometric series. The syllabus states that students only need to calculate these to infinity, not to the sum of n terms.

5 (c) (ii)

$$
\lim _{n \rightarrow \infty} r^{n}=0 \text { for }-1<r<1 \text {. Example: } \lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n}=0
$$

$S_{\infty}=\frac{x(1-0)}{(1-x)^{2}}-\frac{n(0)}{(1-x)}=\frac{x}{(1-x)^{2}}$

