SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2008

- 4 (a) $2 + \frac{2}{3} + \frac{2}{9} + \dots$ is a geometric series. Find the sum to infinity of the series.
 - (b) Given that $u_n = 2(-\frac{1}{2})^n 2$ for all $n \in \mathbb{N}$,
 - (i) write down u_{n+1} and u_{n+2}
 - (ii) show that $2u_{n+2} u_{n+1} u_n = 0$.
 - (c) (i) Write down an expression in n for the sum $1 + 2 + 3 + \dots + n$ and an expression in *n* for the sum $1^2 + 2^2 + 3^2 + \dots + n^2$.
 - (ii) Find, in terms of *n*, the sum $\sum_{r=1}^{n} (6r^2 + 2r + 5 + 2^r)$.

SOLUTION

4 (a)

$$a = 2, r = \frac{1}{3}$$

$$S_{\infty} = \frac{2}{1 - \frac{1}{2}} = \frac{2}{\frac{2}{3}} = 3$$

$$a = 2, r = \frac{1}{3}$$

$$S_{\infty} = \frac{2}{1 - \frac{1}{3}} = \frac{2}{\frac{2}{3}} = 3$$

$$S_{\infty} = \frac{a}{1 - r}, -1 < r < 1$$
......6

4 (b) (i)

$$u_n = 2(-\frac{1}{2})^n - 2$$

$$\therefore u_{n+1} = 2(-\frac{1}{2})^{n+1} - 2$$

$$\therefore u_{n+2} = 2(-\frac{1}{2})^{n+2} - 2$$

$$2u_{n+2} - u_{n+1} - u_n$$

$$= 2[2(-\frac{1}{2})^{n+2} - 2] - [2(-\frac{1}{2})^{n+1} - 2] - [2(-\frac{1}{2})^n - 2]$$

$$= 4(-\frac{1}{2})^{n+2} - \cancel{A} - 2(-\frac{1}{2})^{n+1} + \cancel{Z} - 2(-\frac{1}{2})^n + \cancel{Z}$$

$$= (-\frac{1}{2})^n [4(-\frac{1}{2})^2 - 2(-\frac{1}{2})^1 - 2]$$

$$= (-\frac{1}{2})^n [4(\frac{1}{4}) - 2(-\frac{1}{2}) - 2]$$

$$= (-\frac{1}{2})^n [1 + 1 - 2] = (-\frac{1}{2})^n [0]$$

$$= 0$$

$$\sum_{r=1}^{n} r = S_n = 1 + 2 + \dots + n = \frac{n}{2}(n+1)$$

$$\sum_{r=1}^{n} r^2 = S_n = 1^2 + 2^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1)$$
......

4 (c) (ii)

$$\sum_{r=1}^{n} (6r^{2} + 2r + 5 + 2^{r})$$

$$= 6 \sum_{r=1}^{n} r^{2} + 2 \sum_{r=1}^{n} r + 5 \sum_{r=1}^{n} 1 + \sum_{r=1}^{n} 2^{r}$$

$$= 6 (\frac{n}{6})(n+1)(2n+1) + 2(\frac{n}{2})(n+1) + 5n + \{2^{1} + 2^{2} + 2^{3} + \dots + 2^{n}\}$$

$$= n(n+1)(2n+1) + n(n+1) + 5n + \{2^{1} + 2^{2} + 2^{3} + \dots + 2^{n}\}$$

$$S_{n} = \frac{a(1-r^{n})}{(1-r)}$$
...... 5

This is a geometric series with a = 2, r = 2

$$S_n = \frac{2(1-2^n)}{1-2} = 2(2^n-1)$$

$$\therefore \sum_{r=1}^{n} (6r^2 + 2r + 5 + 2^r) = n(n+1)(2n+1) + n(n+1) + 5n + 2(2^n - 1)$$

5 (a) Find the range of values of x which satisfy the inequality

$$x^2 - 3x - 10 \le 0$$
.

(b) (i) Solve the equation

$$2^{x^2} = 8^{2x+9}.$$

(ii) Solve the equation

$$\log_a(2x+3) + \log_a(x-2) = 2\log_a(x+4)$$
.

(c) Show that there are no natural numbers n and r for which

$$\binom{n}{r-1}$$
, $\binom{n}{r}$ and $\binom{n}{r+1}$ are consecutive terms in a geometric sequence.

SOLUTION

5 (a)

[A] Quadratics:
$$ax^2 + bx + c \le 0$$

STEPS

- 1. Get all terms on one side and zero on the other side.
- **2**. Solve the corresponding equation to get the roots α , β .
- 3. Carry out the region test. Use the roots in ascending order to form regions: $\leftarrow \alpha \leftrightarrow \beta \rightarrow$ Choose a nice number in each region to test the inequality using the **test box**.
- 4. Based on the region test write down the solutions.

Solve
$$x^2 - 3x - 10 = 0$$
.

$$x^2 - 3x - 10 = 0$$

$$\Rightarrow (x-5)(x+2) = 0$$

$$\therefore x = -2, 5$$

Do the region test:

Test box: $(x-5)(x+2) \le 0$

Ans: $-2 \le x \le 5$

5 (b) (i)

STEPS: SOLVING SIMPLE EXPONENTIALS

- 1. Tidy up the algebra using the power rules shown.
- 2. EITHER, express everything in the same base, equate the powers and

OR take the common log of both sides if you cannot get the same base.

$$2^{x^2} = 8^{2x+9}$$

$$\Rightarrow 2^{x^2} = (2^3)^{2x+9} \text{ [Use Power Rule No. 5]}$$

$$\Rightarrow 2^{x^2} = 2^{6x+27}$$

$$\therefore x^2 = 6x + 27$$

$$\Rightarrow x^2 - 6x - 27 = 0$$

$$\Rightarrow (x-9)(x+3) = 0$$

$$\therefore x = -3, 9$$

1.
$$a^{m} \times a^{n} = a^{m+n}$$
 4. $a^{-n} = \frac{1}{a^{n}}$
2. $\frac{a^{m}}{a^{n}} = a^{m-n}$ 5. $(a^{m})^{n} = a^{mn}$
3. $a^{0} = 1$ 6. $\sqrt{a} = a^{\frac{1}{2}}$

4.
$$a^{-n} = \frac{1}{a^n}$$

2.
$$\frac{a^m}{a^n} = a^{m-n}$$

$$5. (a^m)^n = a^{mn}$$

$$a^0 = 1$$

6.
$$\sqrt{a} = a^{\frac{1}{2}}$$

5 (b) (ii)

1.
$$\log_a M + \log_a N = \log_a(MN)$$
 4. $\log_a M = \frac{\log_b M}{\log_b a}$ [Used to change base]
2. $\log_a M - \log_a N = \log_a \left(\frac{M}{N}\right)$ 5. $\log_a 1 = 0$ and $\log_a a = 1$
3. $N \log_a M = \log_a(M^N)$ 6. $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$

2.
$$\log_a M - \log_a N = \log_a \left(\frac{M}{N}\right)$$
 5. $\log_a 1 = 0$ and $\log_a a = 0$

3.
$$N \log_a M = \log_a(M^N)$$
 6. $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$

 $\log_a(2x+3) + \log_a(x-2) = 2\log_a(x+4)$

$$\Rightarrow \log_e(2x+3) + \log_e(x-2) - 2\log_e(x+4) = 0$$
 [Use Log rules 1, 2 and 3.]

$$\Rightarrow \log_e \left[\frac{(2x+3)(x-2)}{(x+4)^2} \right] = 0$$

$$\Rightarrow \left[\frac{(2x+3)(x-2)}{(x+4)^2} \right] = e^0 = 1$$
Get out of logs by hooshing, i.e. hoosh *a* under the *y* and rub out the log.
$$\log_a x = y \Leftrightarrow x = a^y$$

$$\text{Log Statement}$$
Hooshing
Power Statement

$$\Rightarrow$$
 $(2x+3)(x-2) = (x+4)^2$

$$\Rightarrow 2x^2 - x - 6 = x^2 + 8x + 16$$

$$\Rightarrow x^2 - 9x - 22 = 0$$

$$\Rightarrow$$
 $(x-11)(x+2)=0$

$$\therefore x = 11, -2$$

x = 11 is the only solution as the other solution will give you the log of a negative number which is not allowed.

5 (c)

A sequence is geometric if when you divide two successive terms you obtain the common ratio.

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$\therefore \frac{\binom{n}{r}}{\binom{n}{r-1}} = \frac{\binom{n}{r+1}}{\binom{n}{r}}$$

$$\Rightarrow \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r-1)!(n-r+1)!}} = \frac{\frac{n!}{(r+1)!(n-r-1)!}}{\frac{n!}{r!(n-r)!}}$$

$$\Rightarrow \frac{\cancel{n!}}{r!(n-r)!} \times \frac{(r-1)!(n-r+1)!}{\cancel{n!}} = \frac{\cancel{n!}}{(r+1)!(n-r-1)!} \times \frac{r!(n-r)!}{\cancel{n!}}$$

$$\Rightarrow \frac{n-r+1}{r} = \frac{n-r}{r+1}$$

$$\Rightarrow (r+1)(n-r+1) = r(n-r)$$

$$\Rightarrow rn-r^2 + r+n-r+1 = rn-r^2$$

$$\therefore n = -1$$

This is not a natural number. Therefore, there are no natural numbers for which the statement is true.