SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

1997

4 (a) Write down, or find, in terms of *n*, the sum of *n* terms of the finite arithmetic series

$$1 + 2 + 3 + \dots + n$$
.

(b) If for all integers n,

$$u_n = (5n-3)2^n,$$

verify that

$$u_{n+1} - 2u_n = 5(2^{n+1}).$$

(c) Consider the sum to n terms, S_n , of the following finite geometric series

$$S_n = 1 + (1+x) + (1+x)^2 + (1+x)^3 + ... + (1+x)^{n-1}$$

for x > 0.

Show that the coefficient of x^2 in the above expression for S_n is

$$\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{n-1}{2}.$$

By finding S_{25} in terms of x and by considering the coefficient of x^2 in S_{25} , find the value of p and the value of q for which

$$\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{24}{2} = \binom{p}{q}, \text{ where } p, q \in \mathbf{N}.$$

SOLUTION

4 (a)

$$a = 1, d = 1$$

$$S_n = \frac{n}{2}[2a + (n-1)d]$$
 3

$$\therefore S_n = \frac{n}{2}[2(1) + (n-1)1]$$

$$\Rightarrow S_n = \frac{n}{2}[2+n-1]$$

$$\therefore S_n = \frac{n(n+1)}{2}$$

4 (b)

$$u_n = (5n-3)2^n$$

$$\Rightarrow u_{n+1} = (5(n+1) - 3)2^{n+1} = (5n+2)2^{n+1}$$

$$u_{n+1}-2u_n$$

$$= (5n+2)2^{n+1} - 2(5n-3)2^n$$

$$= (5n+2)2^{n+1} - (5n-3)2^{n+1}$$

$$=2^{n+1}(5n+2-5n+3)$$

$$=2^{n+1}(5)$$

$$(x+y)^n = \binom{n}{0} (x)^n (y)^0 + \binom{n}{1} (x)^{n-1} (y)^1 + \binom{n}{2} (x)^{n-2} (y)^2 \dots$$

$$(1+x)^{n} = \binom{n}{0} (1)^{n} (x)^{0} + \binom{n}{1} (1)^{n-1} (x)^{1} + \binom{n}{2} (1)^{n-2} (x)^{2} + \binom{n}{3} (1)^{n-3} (x)^{3} \dots$$

$$\Rightarrow (1+x)^n = 1 + nx + \binom{n}{2}x^2 + \binom{n}{3}x^3 \dots$$

$$\therefore (1+x)^2 = 1 + 2x + \binom{2}{2}x^2 + \dots$$

$$\therefore (1+x)^3 = 1 + 3x + \binom{3}{2}x^2 + \dots$$

•

$$\therefore (1+x)^{n-1} = 1 + (n-1)x + \binom{n-1}{2}x^2 + \dots$$

$$\therefore \text{ Sum of coefficients of } x^2 : \begin{pmatrix} 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \dots \begin{pmatrix} n-1 \\ 2 \end{pmatrix}$$

$$S_n = \frac{a(1-r^n)}{(1-r)}$$
 5

$$a = 1$$
, $r = (1 + x)$, $n = 25$

$$\therefore S_{25} = \frac{1(1 - (1 + x)^{25})}{1 - (1 + x)}$$

$$\Rightarrow S_{25} = \frac{1 - (1 + x)^{25}}{-x} = \frac{(1 + x)^{25} - 1}{x}$$

$$\Rightarrow S_{25} = \frac{\cancel{1} + 25x + \binom{25}{2}x^2 + \binom{25}{3}x^3 + \binom{25}{4}x^4 + \dots + \binom{25}{25}x^{25} - \cancel{1}$$

$$\Rightarrow S_{25} = 25 + {25 \choose 2}x + {25 \choose 3}x^2 + {25 \choose 4}x^3 + \dots + {25 \choose 25}x^{24}$$

$$p = 25, q = 3$$

$$\log_5 x = 1 + \log_5 \left(\frac{3}{2x - 1}\right), x \in \mathbf{R}, x > \frac{1}{2}.$$

(b) (i) Solve
$$\frac{x+3}{x-4} < -2, x \neq 4, x \in \mathbf{R}$$
.

- (ii) If k is a positive integer and 720 is the coefficient of x^3 in the binomial expansion of $(k+2x)^5$, find the value of k.
- (c) Prove by induction that 8 is a factor of $3^{2n} 1$ for $n \in \mathbb{N}_0$.

Log Rules

SOLUTION

5 (a)

$$\log_5 x = 1 + \log_5 \left(\frac{3}{2x - 1}\right)$$

$$\Rightarrow \log_5 x - \log_5 \left(\frac{3}{2x - 1} \right) = 1$$

$$\Rightarrow \log_5\left(\frac{x(2x-1)}{3}\right) = 1$$

$$\Rightarrow (2x-1)$$

$$\Rightarrow x(2x-1) = 5^1$$
Log Rules
$$2. \log_a M - \log_a N = \log_a\left(\frac{M}{N}\right)$$

$$\Rightarrow \frac{x(2x-1)}{3} = 5^1$$

$$\Rightarrow x(2x-1)=15$$

$$\Rightarrow 2x^2 - x = 15$$

$$\Rightarrow 2x^2 - x - 15 = 0$$

$$\Rightarrow (2x+5)(x-3) = 0$$

$$\therefore x = -\frac{8}{2}, 3$$

x = 3 is the only answer as you cannot have the logs of negative numbers.

5 (b) (i)

- 1. Multiply both sides by the denominator **squared** unless you are certain that it is positive.
- 2. Get all terms on one side and take out the highest common factor.
- **3**. Solve the corresponding equation.
- 4. Do region test on the roots in ascending order on **Test Box**.
- 5. Based on the region test write down the solutions.

1.
$$\frac{x+3}{x-4} < -2$$

$$\Rightarrow$$
 $(x-4)(x+3) < -2(x-4)^2$

2.
$$\Rightarrow (x-4)(x+3) + 2(x-4)^2 < 0$$

$$\Rightarrow (x-4)[(x+3)+2(x-4)] < 0$$

$$\Rightarrow (x-4)[x+3+2x-8] < 0$$

$$\Rightarrow (x-4)(3x-5) < 0$$

3.
$$(x-4)(3x-5) = 0 \Rightarrow x = 4, \frac{5}{3}$$

4. Region Test on (x-4)(3x-5) < 0 **Test Box**

5.
$$\therefore \frac{5}{3} < x < 4$$

$$u_{r+1} = {}^{n}C_{r}(x)^{n-r}(y)^{r} = {n \choose r}(x)^{n-r}(y)^{r}$$
 10

$$u_{r+1} = {5 \choose r} k^{5-r} (2x)^r = {5 \choose r} k^{5-r} 2^r x^r$$

Coefficient of $x^3 \Rightarrow r = 3$

$$\left| \left(\frac{5}{3} \right) k^{5-3} 2^3 \right| = 720$$

$$\Rightarrow 10k^2(8) = 720$$

$$\Rightarrow 80k^2 = 720$$

$$\Rightarrow k^2 = 9$$

$$\therefore k = 3$$

5 (c)

STEPS

- **1**. Prove result is true for some starting value of $n \in \mathbb{N}_0$.
- **2**. Assuming result is true for n = k.
- **3**. Prove result is true for n = (k+1).
- **1**. Prove this statement is true for n = 1.

$$3^{2(1)} - 1 = 9 - 1 = 8$$

Therefore, it is true for n = 1.

2. Assume it is true for n = k.

$$\Rightarrow$$
 3^{2k} -1 = 8m, $m \in \mathbb{N}_0$ (i.e. multiple of 8)

$$\Rightarrow$$
 3^{2k} = 8m+1

3. Prove for n = k + 1.

$$3^{2(k+1)} - 1 = 3^{2k+2} - 1$$

$$=3^2 \times 3^{2k} - 1$$
 [Use step 2.]

$$=9(8m+1)-1$$

$$=72m+9-1=72m+8$$

$$=8(9m+1)$$

$$=8a, a \in \mathbb{N}_0$$