SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

LESSON NO. 8: SOME EXTRA ALGEBRA

2006

5 (c) (i) Given two real numbers a and b, where a > 1 and b > 1, prove that

$$\frac{1}{\log_b a} + \frac{1}{\log_a b} \ge 2$$

(ii) Under what condition is $\frac{1}{\log_b a} + \frac{1}{\log_a b} = 2.$

2005

5 (a) Solve for *x*: $\sqrt{10 - x} = 4 - x$.

2003

5 (a) Solve for *x*: $x = \sqrt{7x-6} + 2$.

2005

5 (c) (i) Show that
$$\frac{1}{\log_a b} = \log_b a$$
, where $a, b > 0$ and $a, b \neq 1$.

(ii) Show that $\frac{1}{\log_2 c} + \frac{1}{\log_3 c} + \frac{1}{\log_4 c} + \dots + \frac{1}{\log_r c} = \frac{1}{\log_{r!} c}$, where $c > 0, c \neq 1$.

2004

5 (b) (ii) Solve $\log_4 x - \log_4 (x-2) = \frac{1}{2}$.

2002

5 (a) Find the value of *x* in each case:

(i)
$$\frac{8}{2^x} = 32$$

(ii) $\log_9 x = \frac{3}{2}$

2001

5 (b) (i) Solve $\log_6(x+5) = 2 - \log_6 x$ for x > 0.

Answers **2006** 5 (c) a = b **2005** 5 (a) x = 1 **2003** 5 (a) x = 10 **2004** 5 (b) (ii) x = 4 **2002** 5 (a) (i) x = -2 (ii) x = 27**2001** 5 (b) (i) x = 4