Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 7: Proofs by Induction

2005

5 (b) Prove by induction that $\sum_{r=1}^{n}(3 r-2)=\frac{n}{2}(3 n-1)$.

2002
5 (c) Prove by induction that, for any positive integer $\mathrm{n}, x+x^{2}+x^{3}+\ldots+x^{n}=\frac{x\left(x^{n}-1\right)}{x-1}$, where $x \neq 1$.

2003
5 (b) Use induction to prove that 8 is a factor of $7^{2 n+1}+1$ for any positive integer n.

2004
5 (c) Prove by induction that $2^{n} \geq n^{2}, n \in \mathbf{N}, n \geq 4$.

2001

5 (c) Use induction to prove that, for n a positive integer, $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all $\theta \in \mathbf{R}$ and $i^{2}=-1$.

