Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 5: Sequence Inequalities

2005

4 (c) (i) Show that $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$, where a and b are real numbers.
(ii) The lengths of the sides of a right-angled triangle are a, b and c, where c is the length of the hypotenuse. Using the result from part (i), or otherwise, show that $a+b \leq c \sqrt{2}$.

2004

4 (c) (ii) p, q and r are three numbers in arithmetic sequence. Prove that $p^{2}+r^{2} \geq 2 q^{2}$.

2003

4 (c) (ii) a, b, c, d are the first, second, third and fourth terms of a geometric sequence, respectively. Prove that $a^{2}-b^{2}-c^{2}+d^{2} \geq 0$.

