Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 3: Geometric Sequences

2006

4 (b) The sum to infinity of a geometric series is $\frac{9}{2}$. The second term of the series is -2 . Find the vaue of r, the common ratio of the series.

4 (c) The sequence $u_{1}, u_{2}, u_{3}, \ldots$, defined by $u_{1}=3$ and $u_{n+1}=2 u_{n}+3$, is as follows: $3,9,21,45,93, \ldots$.
(i) Find u_{6}, and verify that it is equal to the sum of the first six terms of a geometric series with first term 3 and common ratio 2 .
(ii) Given that, for all k, u_{k} is the sum of the first k terms of a geometric series with first term 3 and common ratio 2, find $\sum_{k=1}^{n} u_{k}$.

2004

5 (b) (i) In a geometric series, the second term is 8 and the fifth term is 27 . Find the first term and the common ratio.

2002

4 (a) Find in terms of n, the sum of the first n terms of the geometric series $3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\ldots$

2001

5 (a) The second term, u_{2}, of a geometric sequence is 21 . The third term, u_{3}, is -63 . Find
(i) the common ratio
(ii) the first term.

2005

4 (a) Write the recurring decimal $0 \cdot 636363 . \ldots$. as an infinite geometric series and hence as a fraction.

2003
4 (a) Express the recurring decimal $0.252525 \ldots$ in the form $\frac{p}{q}$ where $p, q \in \mathbf{N}$ and $q \neq 0$.

```
Answers
20064 (b) \(r=-\frac{1}{3}\)
20064 (c) (i) \(u_{6}=189\) (ii) \(\sum_{k=1}^{n} u_{k}=6\left(2^{n}-1\right)-3 n\)
20045 (b) (i) \(a=\frac{16}{3}, r=\frac{3}{2}\)
20024 (a) \(6\left[1-\left(\frac{1}{2}\right)^{n}\right]\)
20015 (a) (i) \(r=-3\) (ii) \(a=-7\)
20054 (a) \(\frac{7}{11}\)
20034 (a) \(\frac{25}{99}\)
```

