Sequences \& Series (Q 4 \& 5, Paper 1)

Lesson No. 1: Sequences

2005

4 (b) (ii) A sequence is defined by $u_{n}=(2-n) 2^{n-1}$. Show that $u_{n+2}-4 u_{n+1}+4 u_{n}=0$, for all $n \in \mathbf{N}$.

2003
4 (c) (i) $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots .$. . is a sequence where $u_{1}=2$ and $u_{n+1}=(-1)^{n} u_{n}+3$. Evaluate $u_{2}, u_{3}, u_{4}, u_{5}$ and u_{10}.

2004

4 (c) (i) The sequence $u_{1}, u_{2}, u_{3}, \ldots$. is given by $u_{n+1}=\sqrt{4-\left(u_{n}\right)^{2}}$ and $u_{1}=a>0$. For what value of a will all the terms of the sequence be equal to each other?

2001

4 (a) The sum of the first n terms of an arithmetic series is given by $S_{n}=3 n^{2}-4 n$. Use S_{n} to find: (i) the first term, u_{1}
(ii) the sum of the second term and the third term, $u_{2}+u_{3}$.

Answers

20034 (c) (i) $u_{2}=1, u_{3}=4, u_{4}=-1, u_{5}=2, u_{10}=1$
20044 (c) (i) $a=\sqrt{2}$
20014 (a) (i) -1 (ii) 16

