Sequences \& Series (Q 4 \& 5, Paper 1)

2011

4. (a) In an arithmetic sequence, the third term is -3 and the sixth term is -15 .

Find the first term and the common difference.
(b) Let $u_{n}=l\left(\frac{1}{2}\right)^{n}+m(-1)^{n}$ for all $n \in \mathbb{N}$.
(i) Verify that u_{n} satisfies the equation $2 u_{n+2}+u_{n+1}-u_{n}=0$.
(ii) If $a_{k}=u_{k}+u_{k+1}$, express a_{k} in terms of k and l.
(iii) Find $\sum_{k=1}^{\infty} a_{k}$, in terms of l.
(iv) For $l>0$, find the least positive integer n for which

$$
\sum_{k=1}^{n} a_{k}>(0.99) \sum_{k=1}^{\infty} a_{k} .
$$

5. (a) Find the coefficient of x^{8} in the expansion of $\left(x^{2}-1\right)^{10}$.
(b) (i) Solve the equation:

$$
\log _{2} x-\log _{2}(x-1)=4 \log _{4} 2 .
$$

(ii) Solve the equation:

$$
3^{2 x+1}-17\left(3^{x}\right)-6=0 .
$$

Give your answer correct to two decimal places.
(c) Prove by induction that 9 is a factor of $5^{2 n+1}+2^{4 n+2}$, for all $n \in \mathbb{N}$.

Answers

4 (a) $a=5, d=-4$
(b) (ii) $\frac{3}{2} l\left(\frac{1}{2}\right)^{k}$
(iii) $\frac{3}{2} l$
(iv) $n=7$

5 (a) 210
(b) (i) $x=\frac{4}{3}$
(ii) $x=1.63$

