SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2011

- 4. (a) In an arithmetic sequence, the third term is -3 and the sixth term is -15. Find the first term and the common difference.
 - **(b)** Let $u_n = l(\frac{1}{2})^n + m(-1)^n$ for all $n \in \mathbb{N}$.
 - (i) Verify that u_n satisfies the equation $2u_{n+2} + u_{n+1} u_n = 0$.
 - (ii) If $a_k = u_k + u_{k+1}$, express a_k in terms of k and l.
 - (iii) Find $\sum_{k=1}^{\infty} a_k$, in terms of *l*.

(iv) For l > 0, find the least positive integer *n* for which

$$\sum_{k=1}^{n} a_k > (0.99) \sum_{k=1}^{\infty} a_k.$$

- 5. (a) Find the coefficient of x^8 in the expansion of $(x^2 1)^{10}$.
 - (b) (i) Solve the equation:

$$\log_2 x - \log_2 (x - 1) = 4 \log_4 2.$$

(ii) Solve the equation:

 $3^{2x+1} - 17(3^x) - 6 = 0.$

Give your answer correct to two decimal places.

(c) Prove by induction that 9 is a factor of $5^{2n+1} + 2^{4n+2}$, for all $n \in \mathbb{N}$.

Answers 4 (a) a = 5, d = -4(b) (ii) $\frac{3}{2}l(\frac{1}{2})^{k}$ (iii) $\frac{3}{2}l$ (iv) n = 75 (a) 210 (b) (i) $x = \frac{4}{3}$ (ii) x = 1.63