Sequences \& Series (Q 4 \& 5, Paper 1)

2010
4 (a) Write the recurring decimal $0 \cdot 474747 \ldots$.. as an infinite geometric series and hence as a fraction.
(b) In an arithmetic sequence, the fifth term is -18 and the tenth term is 12 .
(i) Find the first term and the common difference.
(ii) Find the sum of the first fifteen terms of the sequence.
(c) (i) Show that $(r+1)^{3}-(r-1)^{3}=6 r^{2}+2$.
(ii) Hence, or otherwise, prove that $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(iii) Find $\sum_{r=11}^{30}\left(3 r^{2}+1\right)$.

5 (a) Solve the equation: $\log _{2}(x+6)-\log _{2}(x+2)=1$.
(b) Use induction to prove that

$$
2+(2 \times 3)+\left(2 \times 3^{2}\right)+\ldots \ldots \ldots \ldots \ldots+\left(2 \times 3^{n-1}\right)=3^{n}-1,
$$

where n is a positive integer.
(c) (i) Expand $\left(x+\frac{1}{x}\right)^{2}$ and $\left(x+\frac{1}{x}\right)^{4}$.
(ii) Hence, or otherwise, find the value of $x^{4}+\frac{1}{x^{4}}$, given that $x+\frac{1}{x}=3$.

Answers

4 (a) $\frac{47}{99}$
(b) (i) $a=-42, d=6 \quad$ (ii) $S_{15}=0$
(c) (iii) 27,230

5 (a) $x=2$
(c) (i) $x^{2}+2+\frac{1}{x^{2}}, x^{4}+4 x^{2}+6+\frac{4}{x^{2}}+\frac{1}{x^{4}}$ (ii) 47

