Sequences \& Series (Q 4 \& 5, Paper 1)

2009
4 (a) Three consecutive terms of an arithmetic series are $4 x+11,2 x+11$ and $3 x+17$. Find the value of x.
(b) (i) Show that $\frac{2}{r^{2}-1}=\frac{1}{r-1}-\frac{1}{r+1}$, where $r \neq \pm 1$.
(ii) Hence, find $\sum_{r=2}^{n} \frac{2}{r^{2}-1}$.
(iii) Hence, evaluate $\sum_{r=2}^{\infty} \frac{2}{r^{2}-1}$.
(c) A finite geometric sequence has first term a and common ratio r.

The sequence has $2 m+1$ terms, where $m \in \mathbf{N}$.
(i) Write down the last term, in terms of a, r, and m.
(ii) Write down the middle term, in terms of a, r, and m.
(iii) Show that the product of all the terms of the sequence is equal to the middle term raised to the power of the number of terms.

5 (a) Solve for x : $x-2=\sqrt{3 x-2}$.
(b) Prove by induction that, for all positive integers $n, 5$ is a factor of $n^{5}-n$.
(c) Solve the simultaneous equations

$$
\begin{aligned}
& \log _{3} x+\log _{3} y=2 \\
& \log _{3}(2 y-3)-2 \log _{9} x=1
\end{aligned}
$$

Answers

4 (a) $x=-2$
(b) (ii) $\frac{3}{2}-\frac{1}{n}-\frac{1}{n+1}$
(iii) $\frac{3}{2}$
(c) (i) $a r^{2 m}$ (ii) $a r^{m}$

5 (a) $x=6$
(c) $x=2, y=\frac{9}{2}$

