Sequences \& Series (Q 4 \& 5, Paper 1)

2008
4 (a) $2+\frac{2}{3}+\frac{2}{9}+\ldots \ldots$ is a geometric series.
Find the sum to infinity of the series.
(b) Given that $u_{n}=2\left(-\frac{1}{2}\right)^{n}-2$ for all $n \in \mathbf{N}$,
(i) write down u_{n+1} and u_{n+2}
(ii) show that $2 u_{n+2}-u_{n+1}-u_{n}=0$.
(c) (i) Write down an expression in n for the sum $1+2+3+$. \qquad $+n$
and an expression in n for the sum $1^{2}+2^{2}+3^{2}+$ \qquad $+n^{2}$.
(ii) Find, in terms of n, the sum $\sum_{r=1}^{n}\left(6 r^{2}+2 r+5+2^{r}\right)$.

5 (a) Find the range of values of x which satisfy the inequality

$$
x^{2}-3 x-10 \leq 0
$$

(b) (i) Solve the equation

$$
2^{x^{2}}=8^{2 x+9} .
$$

(ii) Solve the equation

$$
\log _{e}(2 x+3)+\log _{e}(x-2)=2 \log _{e}(x+4)
$$

(c) Show that there are no natural numbers n and r for which
$\binom{n}{r-1},\binom{n}{r}$ and $\binom{n}{r+1}$ are consecutive terms in a geometric sequence.

Answers
4 (a) 3
(b) (i) $u_{n+1}=2\left(-\frac{1}{2}\right)^{n+1}-2, u_{n+2}=2\left(-\frac{1}{2}\right)^{n+2}-2$
(c) (i) $\sum n=\frac{n}{2}(n+1), \sum n^{2}=\frac{n}{6}(n+1)(2 n+1)$
(ii) $n(n+1)(2 n+1)+n(n+1)+5 n-2+2^{n+1}$

5 (a) $-2 \leq x \leq 5$
$\begin{array}{ll}\text { (b) (i) } x=-3,9 & \text { (ii) } x=11\end{array}$

