SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2008

- 4 (a) $2 + \frac{2}{3} + \frac{2}{9} + \dots$ is a geometric series. Find the sum to infinity of the series.
 - (b) Given that $u_n = 2(-\frac{1}{2})^n 2$ for all $n \in \mathbf{N}$,
 - (i) write down u_{n+1} and u_{n+2}
 - (ii) show that $2u_{n+2} u_{n+1} u_n = 0$.

(c) (i) Write down an expression in *n* for the sum $1 + 2 + 3 + \dots + n$ and an expression in *n* for the sum $1^2 + 2^2 + 3^2 + \dots + n^2$.

(ii) Find, in terms of *n*, the sum $\sum_{r=1}^{n} (6r^2 + 2r + 5 + 2^r)$.

5 (a) Find the range of values of x which satisfy the inequality $x^2 - 3x - 10 \le 0.$

(b) (i) Solve the equation

$$2^{x^2} = 8^{2x+9}.$$

(ii) Solve the equation

$$\log_{e}(2x+3) + \log_{e}(x-2) = 2\log_{e}(x+4).$$

(c) Show that there are no natural numbers n and r for which

 $\binom{n}{r-1}, \binom{n}{r}$ and $\binom{n}{r+1}$ are consecutive terms in a geometric sequence.

Answers
4 (a) 3
(b) (i)
$$u_{n+1} = 2(-\frac{1}{2})^{n+1} - 2$$
, $u_{n+2} = 2(-\frac{1}{2})^{n+2} - 2$
(c) (i) $\sum n = \frac{n}{2}(n+1)$, $\sum n^2 = \frac{n}{6}(n+1)(2n+1)$
(ii) $n(n+1)(2n+1) + n(n+1) + 5n - 2 + 2^{n+1}$
5 (a) $-2 \le x \le 5$
(b) (i) $x = -3$, 9 (ii) $x = 11$