Sequences \& Series (Q 4 \& 5, Paper 1)

2007

4 (a) Show that $\binom{n}{1}+\binom{n}{2}=\binom{n+1}{2}$ for all natural numbers $n \geq 2$.
(b) $u_{1}=5$ and $u_{n+1}=\frac{n}{n+1} u_{n}$ for all $n \geq 1, n \in \mathbf{N}$.
(i) Write down the value of each of u_{2}, u_{3}, and u_{4}.
(ii) Hence, by inspection, write an expression for u_{n} in terms of n.
(iii) Use induction to justify your answer for part (ii).
(c) The sum of the first n terms of a series is given by $S_{n}=n^{2} \log _{e} 3$.
(i) Find the $n^{\text {th }}$ term and prove that the series is arithmetic.
(ii) How many of the terms of the series are less than $12 \log _{e} 27$?

5 (a) Plot, on the number line, the values of x that satisfy the inequality $|x+1| \leq 2$, where $x \in \mathbf{Z}$.
(b) In the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{9}$,
(i) find the general term
(ii) find the value of the term independent of x.
(c) The $n^{\text {th }}$ term of a series is given by $n x^{n}$, where $|x|<1$.
(i) Find an expression for S_{n}, the sum of the first n terms of the series.
(ii) Hence, find the sum to infinity of the series.

Answers

4 (b) (i) $\frac{5}{2}, \frac{5}{3}, \frac{5}{4}$
(ii) $u_{n}=\frac{5}{n}$
(c) (i) $S_{n}=\frac{x\left(1-x^{n}\right)}{(1-x)^{2}}+\frac{n x^{n+1}}{(1-x)}$
(c) (i) $u_{n}=(2 n-1) \ln 3$
(ii) 17
(ii) $S_{\infty}=\frac{x}{(1-x)^{2}}$
5 (b) (i) $\binom{9}{r}(2 x)^{9-r}\left(-\frac{1}{x}\right)^{r}$ (ii) -5376

