Sequences \& Series (Q 4 \& 5, Paper 1)

2006

4 (a) $-2+2+6+\ldots+(4 n-6)$ are the first n terms of an arithmetic series. S_{n}, the sum of these n terms, is 160 . Find the value of n.

4 (b) The sum to infinity of a geometric series is $\frac{9}{2}$. The second term of the series is -2. Find the vaue of r, the common ratio of the series.

4 (c) The sequence $u_{1}, u_{2}, u_{3}, \ldots$, defined by $u_{1}=3$ and $u_{n+1}=2 u_{n}+3$, is as follows:
$3,9,21,45,93, \ldots$.
(i) Find u_{6}, and verify that it is equal to the sum of the first six terms of a geometric series with first term 3 and common ratio 2 .
(ii) Given that, for all k, u_{k} is the sum of the first k terms of a geometric series with first term 3 and common ratio 2 , find $\sum_{k=1}^{n} u_{k}$.

5 (a) Find the value of the middle term of the binomial expansion of $\left(\frac{x}{y}-\frac{y}{x}\right)^{8}$.
5 (b) (i) Express $\frac{2}{(r+1)(r+3)}$ in the form $\frac{A}{r+1}+\frac{B}{r+3}$.
(ii) Hence find $\sum_{r=1}^{n} \frac{2}{(r+1)(r+3)}$.
(iii) Hence evaluate $\sum_{r=1}^{\infty} \frac{2}{(r+1)(r+3)}$.

5 (c) (i) Given two real numbers a and b, where $a>1$ and $b>1$, prove that $\frac{1}{\log _{b} a}+\frac{1}{\log _{a} b} \geq 2$.
(ii) Under what condition is $\frac{1}{\log _{b} a}+\frac{1}{\log _{a} b}=2$.

$$
\begin{aligned}
& \text { ANSWERS } \\
& 4 \text { (a) } n=10 \\
& 4 \text { (b) } r=-\frac{1}{3} \\
& 4 \text { (c) (i) } u_{6}=189 \text { (ii) } \sum_{k=1}^{n} u_{k}=6\left(2^{n}-1\right)-3 n \\
& 5 \text { (a) } 70 \\
& 5 \text { (b) (i) } \frac{1}{r+1}-\frac{1}{r+3} \\
& 5 \text { (ii) } \frac{5}{6}-\frac{1}{r+2}-\frac{1}{r+1} \\
& \text { (c) (ii) } a=b
\end{aligned}
$$

