Sequences \& Series (Q 4 \& 5, Paper 1)

2005

4 (a) Write the recurring decimal $0 \cdot 636363 . \ldots$ as an infinite geometric series and hence as a fraction.

4 (b) (i) The first three terms in the binomial expansion of $(1+k x)^{n}$ are $1-21 x+189 x^{2}$. Find the value of n and the value of k.
(ii) A sequence is defined by $u_{n}=(2-n) 2^{n-1}$. Show that $u_{n+2}-4 u_{n+1}+4 u_{n}=0$, for all $n \in \mathbf{N}$.
4 (c) (i) Show that $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}$, where a and b are real numbers.
(ii) The lengths of the sides of a right-angled triangle are a, b and c, where c is the length of the hypotenuse. Using the result from part (i), or otherwise, show that $a+b \leq c \sqrt{2}$.

5 (a) Solve for $x: \sqrt{10-x}=4-x$.

5 (b) Prove by induction that $\sum_{r=1}^{n}(3 r-2)=\frac{n}{2}(3 n-1)$.
5 (c) (i) Show that $\frac{1}{\log _{a} b}=\log _{b} a$, where $a, b>0$ and $a, b \neq 1$.
(ii) Show that $\frac{1}{\log _{2} c}+\frac{1}{\log _{3} c}+\frac{1}{\log _{4} c}+\ldots \ldots .+\frac{1}{\log _{r} c}=\frac{1}{\log _{r!} c}$, where $c>0, c \neq 1$.

Answers
4 (a) $\frac{7}{11}$
4 (b) (i) $n=7, k=-3$
5 (a) $x=1$

