Sequences \& Series (Q 4 \& 5, Paper 1)

2004

4 (a) Show that $3\binom{n}{3}=n\binom{n-1}{2}$ for all natural numbers $n \geq 3$.
4 (b) (i) Show that $\frac{2}{(2 r-1)(2 r+1)}=\frac{1}{2 r-1}-\frac{1}{2 r+1}, r \neq \pm \frac{1}{2}$.
(ii) Hence, find $\sum_{r=1}^{n} \frac{2}{(2 r-1)(2 r+1)}$.
(iii) Evaluate $\sum_{r=1}^{\infty} \frac{2}{(2 r-1)(2 r+1)}$.

4 (c) (i) The sequence $u_{1}, u_{2}, u_{3}, \ldots$. is given by $u_{n+1}=\sqrt{4-\left(u_{n}\right)^{2}}$ and $u_{1}=a>0$. For what value of a will all the terms of the sequence be equal to each other?
(ii) p, q and r are three numbers in arithmetic sequence. Prove that $p^{2}+r^{2} \geq 2 q^{2}$.

5 (a) Find the fifth term in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{6}$ and show that it is independent of x.
5 (b) (i) In a geometric series, the second term is 8 and the fifth term is 27 . Find the first term and the common ratio.
(ii) Solve $\log _{4} x-\log _{4}(x-2)=\frac{1}{2}$.

5 (c) Prove by induction that $2^{n} \geq n^{2}, n \in \mathbf{N}, n \geq 4$.

Answers

4 (b) (ii) $1-\frac{1}{2 n+1}$
(iii) 1

4 (c) (i) $a=\sqrt{2}$
5 (a) 15
5 (b) (i) $a=\frac{16}{3}, r=\frac{3}{2}$
(ii) $x=4$

