Sequences \& Series (Q 4 \& 5, Paper 1)

2003

4 (a) Express the recurring decimal $0.252525 \ldots$ in the form $\frac{p}{q}$ where $p, q \in \mathbf{N}$ and $q \neq 0$.
4 (b) In an arithmetic series, the sum of the second term and the fifth term is 18 . The sixth term is greater than the third term by 9.
(i) Find the first term and the common difference.
(ii) What is the smallest value of n such that $S_{n}>600$, where S_{n} is the sum of the first n terms of the series?

4 (c) (i) $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, \ldots .$. is a sequence where $u_{1}=2$ and $u_{n+1}=(-1)^{n} u_{n}+3$. Evaluate $u_{2}, u_{3}, u_{4}, u_{5}$ and u_{10}.
(ii) a, b, c, d are the first, second, third and fourth terms of a geometric sequence, respectively. Prove that $a^{2}-b^{2}-c^{2}+d^{2} \geq 0$.

5 (a) Solve for x : $x=\sqrt{7 x-6}+2$.

5 (b) Use induction to prove that 8 is a factor of $7^{2 n+1}+1$ for any positive integer n.

5 (c) Consider the binomial expansion of $\left(a x+\frac{1}{b x}\right)^{8}$, where a and b are non-zero real numbers.
(i) Write down the general term.
(ii) Given that the coefficient of x^{2} is the equal to the coefficient of x^{4}, show that $a b=2$.

> ANSWERS
> 4 (a) $\frac{25}{99}$
> 4 (b) (i) $a=\frac{3}{2}, d=3 \quad$ (ii) $n=21$
> 4 (c) (i) $u_{2}=1, u_{3}=4, u_{4}=-1, u_{5}=2, u_{10}=1$
> 5 (a) $x=10$
> 5 (c) (i) $\binom{8}{r}(a x)^{8-r}\left(\frac{1}{b x}\right)^{r}$

