SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2003

- 4 (a) Express the recurring decimal 0.252525... in the form $\frac{p}{q}$ where $p, q \in \mathbb{N}$ and $q \neq 0$.
- 4 (b) In an arithmetic series, the sum of the second term and the fifth term is 18. The sixth term is greater than the third term by 9.
 - (i) Find the first term and the common difference.
 - (ii) What is the smallest value of *n* such that $S_n > 600$, where S_n is the sum of the first *n* terms of the series?

4 (c) (i) $u_1, u_2, u_3, u_4, u_5, \dots$ is a sequence where $u_1 = 2$ and $u_{n+1} = (-1)^n u_n + 3$. Evaluate u_2, u_3, u_4, u_5 and u_{10} .

- (ii) *a*, *b*, *c*, *d* are the first, second, third and fourth terms of a geometric sequence, respectively. Prove that $a^2 b^2 c^2 + d^2 \ge 0$.
- 5 (a) Solve for *x*: $x = \sqrt{7x 6} + 2$.
- 5 (b) Use induction to prove that 8 is a factor of $7^{2n+1} + 1$ for any positive integer *n*.
- 5 (c) Consider the binomial expansion of $\left(ax + \frac{1}{bx}\right)^8$, where *a* and *b* are non-zero real
 - numbers.
 - (i) Write down the general term.
 - (ii) Given that the coefficient of x^2 is the equal to the coefficient of x^4 , show that ab = 2.

ANSWERS

4 (a) $\frac{25}{99}$ 4 (b) (i) $a = \frac{3}{2}, d = 3$ (ii) n = 214 (c) (i) $u_2 = 1, u_3 = 4, u_4 = -1, u_5 = 2, u_{10} = 1$ 5 (a) x = 105 (c) (i) $\binom{8}{r} (ax)^{8-r} (\frac{1}{bx})^r$