Sequences \& Series (Q 4 \& 5, Paper 1)

2002

4 (a) Find in terms of n, the sum of the first n terms of the geometric series $3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\ldots$

4 (b) (i) Show that $\frac{2}{k(k+2)}=\frac{1}{k}-\frac{1}{k+2}$, for all $k \in \mathbf{R}, k \neq 0,-2$.
(ii) Evaluate, in terms of $n, \sum_{k=1}^{n} \frac{2}{k(k+2)}$.
(iii) Evaluate $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$.

4 (c) Three numbers are in arithmetic sequence. Their sum is 27 and their product is 704. Find the three numbers.

5 (a) Find the value of x in each case:
(i) $\frac{8}{2^{x}}=32$
(ii) $\log _{9} x=\frac{3}{2}$.

5 (b) The first three terms in the binomial expansion of $(1+a x)^{n}$ are $1+2 x+\frac{7}{4} x^{4}$.
(i) Find the value of a and the value of n.
(ii) Hence, find the middle term in the expansion.

5 (c) Prove by induction that, for any positive integer $\mathrm{n}, x+x^{2}+x^{3}+\ldots+x^{n}=\frac{x\left(x^{n}-1\right)}{x-1}$, where $x \neq 1$.
Answers
4 (a) $6\left[1-\left(\frac{1}{2}\right)^{n}\right]$
4 (b) (ii) $\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
(iii) $\frac{3}{2}$
4 (c) $\frac{32}{3}, 9, \frac{22}{3}$
5 (a) (i) $x=-2$
(ii) $x=27$
5 (b) (i) $a=\frac{1}{4}, n=8$
(ii) $\frac{35 x^{4}}{128}$

