SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2002

4 (a) Find in terms of *n*, the sum of the first *n* terms of the geometric series $3 + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \dots$

4 (b) (i) Show that
$$\frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2}$$
, for all $k \in \mathbf{R}$, $k \neq 0, -2$.
(ii) Evaluate, in terms of n , $\sum_{k=1}^{n} \frac{2}{k(k+2)}$.
(iii) Evaluate $\sum_{k=1}^{\infty} \frac{2}{k(k+2)}$.

4 (c) Three numbers are in arithmetic sequence. Their sum is 27 and their product is 704. Find the three numbers.

5 (a) Find the value of *x* in each case:

(i)
$$\frac{8}{2^x} = 32$$

(ii) $\log_9 x = \frac{3}{2}$

5 (b) The first three terms in the binomial expansion of $(1 + ax)^n$ are $1 + 2x + \frac{7}{4}x^4$.

(i) Find the value of *a* and the value of *n*.

(ii) Hence, find the middle term in the expansion.

5 (c) Prove by induction that, for any positive integer n, $x + x^2 + x^3 + ... + x^n = \frac{x(x^n - 1)}{x - 1}$, where $x \neq 1$.

Answers
4 (a)
$$6\left[1-\left(\frac{1}{2}\right)^{n}\right]$$

4 (b) (ii) $\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}$ (iii) $\frac{3}{2}$
4 (c) $\frac{32}{3}$, 9, $\frac{22}{3}$
5 (a) (i) $x = -2$ (ii) $x = 27$
5 (b) (i) $a = \frac{1}{4}$, $n = 8$ (ii) $\frac{35x^{4}}{128}$