
4 (a) The sum of the first n terms of an arithmetic series is given by S n nn = −3 42 .  Use Sn

to find:  (i) the first term, u1

4 (c) (i) Write 
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 in the form an bn c2 + +  where a b c, , .∈R

4 (b) (i) Show that 
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+  for n∈N.

5 (b) (i) Solve log ( ) log6 65 2x x+ = −  for x > 0.

5 (a) The second term, u2 ,  of a geometric sequence is 21. The third term, u3,  is −63.  Find
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5 (c) Use induction to prove that, for n a positive integer, (cos sin ) cos sinθ θ θ θ+ = +i n i nn

for all θ ∈R  and i2 1= − .

(ii) Hence, find 
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(ii)  the sum of the second term and the third term, u u2 3+ .

(ii) In the binomial expansion of ( ) ,1 6+ kx  the coefficient of x4  is 240. Find the two
possible values of k.

(i) the common ratio
(ii) the first term.

(ii) Hence, evaluate n
nn
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ANSWERS

4 (a) (i) −1 (ii) 16

4 (b) (ii) 
1
3

1
3

1
3

−
+k

;

4 (c) (i) n n2 2 4− + (ii) 8,645

5 (a) (i) r = −3 (ii) a = −7
5 (b) (i) x = 4 (ii) k = ±2
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