SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2001

- 4 (a) The sum of the first *n* terms of an arithmetic series is given by $S_n = 3n^2 4n$. Use S_n to find: (i) the first term, u_1 (ii) the sum of the second term and the third term, $u_2 + u_3$. 4 (b) (i) Show that $\frac{1}{(n+2)(n+2)} = \frac{1}{n+2} - \frac{1}{n+3}$ for $n \in \mathbb{N}$. (ii) Hence, find $\sum_{n=1}^{k} \frac{1}{(n+2)(n+2)}$ and evaluate $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+2)}$. 4 (c) (i) Write $\frac{n^3 + 8}{n+2}$ in the form $an^2 + bn + c$ where $a, b, c \in \mathbb{R}$. (ii) Hence, evaluate $\sum_{n=1}^{30} \frac{n^3 + 8}{n+2}$. [Note: $\sum_{n=1}^{k} n = \frac{k}{2}(k+1); \sum_{n=1}^{k} n^2 = \frac{k}{6}(k+1)(2k+1).$]
 - 5 (a) The second term, u_2 , of a geometric sequence is 21. The third term, u_3 , is -63. Find (i) the common ratio
 - (ii) the first term.
 - 5 (b) (i) Solve $\log_6(x+5) = 2 \log_6 x$ for x > 0.
 - (ii) In the binomial expansion of $(1 + kx)^6$, the coefficient of x^4 is 240. Find the two possible values of k.
 - 5 (c) Use induction to prove that, for *n* a positive integer, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ for all $\theta \in \mathbf{R}$ and $i^2 = -1$.

Answers

4 (a) (i) -1 (ii) 16 4 (b) (ii) $\frac{1}{3} - \frac{1}{k+3}; \frac{1}{3}$ 4 (c) (i) $n^2 - 2n + 4$ (ii) 8,645 5 (a) (i) r = -3 (ii) a = -75 (b) (i) x = 4 (ii) $k = \pm 2$