Sequences \& Series (Q 4 \& 5, Paper 1)

2001

4 (a) The sum of the first n terms of an arithmetic series is given by $S_{n}=3 n^{2}-4 n$. Use S_{n} to find: (i) the first term, u_{1}
(ii) the sum of the second term and the third term, $u_{2}+u_{3}$.

4 (b) (i) Show that $\frac{1}{(n+2)(n+2)}=\frac{1}{n+2}-\frac{1}{n+3}$ for $n \in \mathbf{N}$.
(ii) Hence, find $\sum_{n=1}^{k} \frac{1}{(n+2)(n+2)}$ and evaluate $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+2)}$.

4 (c) (i) Write $\frac{n^{3}+8}{n+2}$ in the form $a n^{2}+b n+c$ where $a, b, c \in \mathbf{R}$.
(ii) Hence, evaluate $\sum_{n=1}^{30} \frac{n^{3}+8}{n+2}$.
[Note: $\sum_{n=1}^{k} n=\frac{k}{2}(k+1) ; \sum_{n=1}^{k} n^{2}=\frac{k}{6}(k+1)(2 k+1)$.]

5 (a) The second term, u_{2}, of a geometric sequence is 21 . The third term, u_{3}, is -63 . Find
(i) the common ratio
(ii) the first term.

5 (b) (i) Solve $\log _{6}(x+5)=2-\log _{6} x$ for $x>0$.
(ii) In the binomial expansion of $(1+k x)^{6}$, the coefficient of x^{4} is 240 . Find the two possible values of k.

5 (c) Use induction to prove that, for n a positive integer, $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all $\theta \in \mathbf{R}$ and $i^{2}=-1$.

Answers
4 (a) (i) -1 (ii) 16
4 (b) (ii) $\frac{1}{3}-\frac{1}{k+3} ; \frac{1}{3}$
4 (c) (i) $n^{2}-2 n+4 \quad$ (ii) 8,645
5 (a) (i) $r=-3$
(ii) $a=-7$
5 (b) (i) $x=4$
(ii) $k= \pm 2$

