SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

2000

- 4 (a) The first three terms of a geometric sequence are 2x-4, x+1, x-3. Find the two possible values of x.
 4 (b) Given that u_n = ½(4ⁿ 2ⁿ) for all integers n, show that u_{n+1} = 2u_n + 4ⁿ.
 4 (c) (i) Given that g(x) = 1+2x+3x² + 4x³... where -1 < x < 1, show that g(x) = 1/(1-x)².
 (ii) P(n) = u₁u₂u₃u₄...u_n where u_k = ar^{k-1} for k = 1, 2, 3,..., n and a, r ∈ **R**.
 - Write P(n) in the form $a^n r^{f(n)}$ where f(n) is a quadratic expression in n.
- 5 (a) Express the recurring decimal 1.2 in the form $\frac{a}{b}$ where $a, b \in \mathbf{N}$.
- 5 (b) Prove by induction that $n! > 2^n$, $n \in \mathbb{N}$, $n \ge 4$.
- 5 (c) (i) Solve for x

$$2\log_9 x = \frac{1}{2} + \log_9(5x+18), x > 0.$$

(ii) Solve for x

 $3e^x - 7 + 2e^{-x} = 0.$

Answers 4 (a) 1, 11 4 (c) (ii) $a^n \times r^{\frac{n}{2}(n-1)}$ 5 (a) $\frac{11}{9}$ 5 (c) (i) 6, 9 (ii) $-\ln 3$, $\ln 2$