Sequences \& Series (Q 4 \& 5, Paper 1)

1999

4 (a) Solve $\binom{n+4}{2}=91$, for $n \in \mathbf{N}$.
4 (b) (i) The nth term of an arithmetic series is $3 n+2$.
Find S_{n}, the sum of the first n terms, in terms of n.
(ii) Evaluate, in terms of $n, \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)$.

4 (c) Let $f(x)=\sum_{n=1}^{\infty} q^{n-1} x^{n}$, where $|x|<1$ and $0<q<1$.
Show that $f(x)=\frac{x}{1-q x}$.
If $g(x)=\frac{1}{1-(1-q) f(x)}$, show that $g(x)=\frac{1-q x}{1-x}$.

5 (a) Find the coefficient of a^{3} in $(2+a)^{5}$.
5 (b) (i) Solve the equation $\sqrt{2 x+7}=2+\sqrt{x}$.
(ii) If $x>0$ and $x \neq 1$, show that

$$
\frac{1}{\log _{2} x}+\frac{1}{\log _{3} x}+\frac{1}{\log _{5} x}=\frac{1}{\log _{30} x} .
$$

Note: $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$.
5 (c) Prove by induction that $\sum_{r=1}^{n} r^{2}=\frac{n}{6}(n+1)(2 n+1)$.

Answers

$4 \quad$ (a) 10
$\begin{array}{ll}\text { (b) (i) } \frac{n}{2}(3 n+7) & \text { (ii) } 1-\frac{1}{n+1}\end{array}$
5 (a) 40
5 (b) (i) 1, 9

