SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

1999

4 (a) Solve
$$\binom{n+4}{2} = 91$$
, for $n \in \mathbb{N}$.
4 (b) (i) The *n*th term of an arithmetic series is $3n + 2$.
Find S_n , the sum of the first *n* terms, in terms of *n*.
(ii) Evaluate, in terms of *n*, $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$.
4 (c) Let $f(x) = \sum_{n=1}^{\infty} q^{n-1}x^n$, where $|x| < 1$ and $0 < q < 1$.
Show that $f(x) = \frac{x}{1-qx}$.
If $g(x) = \frac{1}{1-(1-q)f(x)}$, show that $g(x) = \frac{1-qx}{1-x}$.

5 (a) Find the coefficient of
$$a^3$$
 in $(2+a)^5$.

5 (b) (i) Solve the equation
$$\sqrt{2x+7} = 2 + \sqrt{x}$$
.

(ii) If
$$x > 0$$
 and $x \neq 1$, show that

$$\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \frac{1}{\log_5 x} = \frac{1}{\log_{30} x}$$

Note:
$$\log_b a = \frac{\log_c a}{\log_c b}$$
.

5 (c) Prove by induction that
$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1).$$

Answers 4 (a) 10 (b) (i) $\frac{n}{2}(3n+7)$ (ii) $1-\frac{1}{n+1}$ 5 (a) 40 5 (b) (i) 1, 9