
4 (a) Find the sum to infinity of the geometric series
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(b) If for all integers n,
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5 (a) Find the value of the term which is independent of x in the expansion of
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(b) Solve
log ( ) log ( ), , .5 52 1 6 6x x x x− = − − ∈ >R

(c) Let u x nxn
n= + − −( )1 1  for n x∈ ∈N R0 ,  and x > −1  and where u u xn n= ( ).

Show that
u un n+ ≥1

(i) when x = 0
(ii) when x > 0
(iii) when − < <1 0x .

Show that u2 0≥ .
Hence, or otherwise, deduce that
( ) , .1 1 1+ ≥ + > −x nx xn
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ANSWERS

4 (a) 3
(b) S r∞ = ≥1

2 50;

5 (a) 84
(b) x = 7
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