SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

1998

4 (a) Find the sum to infinity of the geometric series

$$1 + (\frac{2}{3}) + (\frac{2}{3})^{2} + (\frac{2}{3})^{3} + \dots$$
(b) If for all integers n ,

$$u_{n} = 3 + n(n-1)^{2}$$
,
show that

$$u_{n+1} - u_{n} = 3n^{2} - n.$$
(c) Show that for n a natural number $\frac{1}{4n^{2} - 1} = \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$
Let $u_{n} = \frac{1}{4n^{2} - 1}$.
Find $\sum_{n=1}^{\infty} u_{n}$.
Find the least value of r such that

$$\sum_{n=1}^{r} u_{n} > \frac{99}{100} \sum_{n=1}^{\infty} u_{n}, r \in \mathbb{N}.$$

5 (a) Find the value of the term which is independent of x in the expansion of

$$\left(x^2-\frac{1}{x}\right)^9.$$

(b) Solve

 $\log_5(x-2) = 1 - \log_5(x-6), x \in \mathbf{R}, x > 6.$

(c) Let $u_n = (1+x)^n - 1 - nx$ for $n \in \mathbb{N}_0, x \in \mathbb{R}$ and x > -1 and where $u_n = u_n(x)$. Show that

 $u_{n+1} \ge u_n$

(i) when
$$x = 0$$

- (ii) when x > 0
- (iii) when -1 < x < 0.

Show that $u_2 \ge 0$.

Hence, or otherwise, deduce that

$$(1+x)^n \ge 1+nx, x > -1.$$

Answers	
4	(a) 3
	(b) $S_{\infty} = \frac{1}{2}; r \ge 50$
5	(a) 84 (b) $x = 7$