SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

1997

4 (a) Write down, or find, in terms of n, the sum of n terms of the infinite arithmetic series

 $1 + 2 + 3 + \dots + n$.

(b) If for all integers *n*,

 $u_n = (5n-3)2^n$, verify that

$u_{n+1} - 2u_n = 5(2^{n+1}).$

(c) Consider the sum to *n* terms, S_n , of the following finite geometric series

$$S_n = 1 + (1+x) + (1+x)^2 + (1+x)^3 + \dots + (1+x)^{n-1}$$

for $x > 0$.

Show that the coefficient of x^2 in the above expression for S_n is

 $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots + \binom{n-1}{2}.$

By finding S_{25} in terms of x and by considering the coefficient of x^2 in S_{25} , find the value of p and the value of q for which

 $\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \dots \binom{24}{2} = \binom{p}{q}, \text{ where } p, q \in \mathbf{N}.$

5 (a) Solve

$$\log_5 x = 1 + \log_5\left(\frac{3}{2x-1}\right), x \in \mathbf{R}, x > \frac{1}{2}.$$

(b) (i) Solve
$$\frac{x-3}{x-4} < -2, x \neq 4, x \in \mathbf{R}$$

- (ii) If k is a positive integer and 720 is the coefficient of x^3 in the binomial expansion of $(k + 2x)^5$, find the value of k.
- (c) Prove by induction that 8 is a factor of $3^{2n} 1$ for $n \in \mathbb{N}_0$.

Answers 4 (a) $\frac{n(n+1)}{2}$ 5 (a) 3 (c) p = 25, q = 3 (b) (i) $\frac{5}{3} < x < 4$ (ii) k = 3