Sequences \& Series (Q 4 \& 5, Paper 1)

1997
4 (a) Write down, or find, in terms of n, the sum of n terms of the infinite arithmetic series

$$
1+2+3+\ldots .+n .
$$

(b) If for all integers n,
$u_{n}=(5 n-3) 2^{n}$,
verify that
$u_{n+1}-2 u_{n}=5\left(2^{n+1}\right)$.
(c) Consider the sum to n terms, S_{n}, of the following finite geometric series
$S_{n}=1+(1+x)+(1+x)^{2}+(1+x)^{3}+\ldots+(1+x)^{n-1}$
for $x>0$.
Show that the coefficient of x^{2} in the above expression for S_{n} is
$\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots . .\binom{n-1}{2}$.
By finding S_{25} in terms of x and by considering the coefficient of x^{2} in S_{25}, find the value of p and the value of q for which

$$
\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots \ldots .\binom{24}{2}=\binom{p}{q} \text {, where } p, q \in \mathbf{N} \text {. }
$$

5 (a) Solve

$$
\log _{5} x=1+\log _{5}\left(\frac{3}{2 x-1}\right), x \in \mathbf{R}, x>\frac{1}{2} .
$$

(b) (i) Solve $\frac{x-3}{x-4}<-2, x \neq 4, x \in \mathbf{R}$.
(ii) If k is a positive integer and 720 is the coefficient of x^{3} in the binomial expansion of $(k+2 x)^{5}$, find the value of k.
(c) Prove by induction that 8 is a factor of $3^{2 n}-1$ for $n \in \mathbf{N}_{0}$.

Answers

4
(a) $\frac{n(n+1)}{2}$
$5 \quad$ (a) 3
(c) $p=25, q=3$
(b) (i) $\frac{5}{3}<x<4$
(ii) $k=3$

