
DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2011

6. (a) Differentiate cos2 x  with respect to x.

(b) The equation of a curve is y e x= − 2

.

(i) Find  
dy
dx

.

(ii) Find the co-ordinates of the turning point of the curve.

(iii) Determine whether this turning point is a local maximum or a local minimum.

(c) The function  f  is defined as x x
x

→
+

2
1

,  where x∈ −\{ }.1

(i) Find the equations of the asymptotes of the curve y = f (x).

(ii) P and Q are distinct points on the curve y = f (x).
The tangent at Q is parallel to the tangent at P.
The co-ordinates of P are (1, 1).
Find the co-ordinates of Q.

(iii) Verify that the point of intersection of the asymptotes is the midpoint of  [PQ].

y f x dy
dx

n f x f xn n= ⇒ = × ′−[ ( )] [ ( )] ( )1

y x dy
dx

x= ⇒ = −cos sin

SOLUTION

6 (a)

y x x
dy
dx

x x x x

= =

= − = −

cos (cos )

(cos )( sin ) cos sin

2 2

2 2

6 (b) (i)

Repeat the whole function ×  Differentiation of the power.

REMEMBER IT AS:

y e dy
dx

e f xf x f x= ⇒ = × ′( ) ( ) ( )y e
dy
dx

xe

x

x

=

= −

−

−

2

2

2
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To find the turning points set

dy
dx

= 0  and solve for x.

Turning Point ⇒ =
dy
dx

0

6 (b) (ii)

dy
dx
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d y
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2 0
⎛

⎝
⎜

⎞

⎠
⎟ >

TP
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dx
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d y
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x e x e
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x x
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= − − + −
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=
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⎛
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⎠
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x

x

x
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2
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( )

( ) ( , ) is a local maxium.

6 (c) (i)
FINDING THE VERTICAL ASYMPTOTE: Put the denominator equal to zero.

FINDING THE HORIZONTAL ASYMPTOTE: Find lim .
x

y
→∞

( )x x+ = ⇒ = −1 0 1

lim lim

lim
( )

x x

x
x

y x
x

x
x

y

→∞ →∞

→∞

=
+

⎛
⎝
⎜

⎞
⎠
⎟

=
+

⎛

⎝
⎜

⎞

⎠
⎟

=
∴ =

2
1

2
1

2
2

1

x

y

x = -1

y = 2 (-1, 2)

P(1, 1)

Q

t

t

6 (b) (iii)

Sketch the situation:
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( , )
+

=
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−

=

∴ −Q

P Q
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[ ] , ( , )
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1 3
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−

=
− +⎛

⎝
⎜

⎞
⎠
⎟ = −Midpoint of  

6 (c) (ii)

[Differentiate the function to get an expression for slope.]

[Find the slope at x = 1.]

[Find the values of x which have this slope. Parallel tangents
have the same slope.]

x

y

x = -1

y = 2 (-1, 2)

P(1, 1)

Q

t

t

6 (c) (iii)

As you can see from the diagram the midpoint of [PQ] is is equal to the point of intersection of
the asymptotes.
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7. (a) Find the slope of the tangent to the curve x y x2 3 2+ = −   at the point (3, –2).

(b) A curve is defined by the parametric equations

x t
t

=
−
+

1
1

 and y t
t

=
−
+
4
1 2( )

,  where t ≠ −1.

(i) Find dx
dt

 and dy
dt

.

(ii) Hence find dy
dx

,  and express your answer in terms of  x.

(c) The functions f  and g are defined on the domain x∈ −\{ , }1 0  as follows:

f x x
x

: tan→
−
+

⎛
⎝
⎜

⎞
⎠
⎟

−1

1
 and g x x

x
: tan .→

+⎛
⎝
⎜

⎞
⎠
⎟

−1 1

(i) Show that ′ =
−
+ +

f x
x x

( ) .1
2 2 12

(ii) It can be shown that ′ = ′f x g x( ) ( ).
One of the three diagrams A, B, or C below represents parts of the graphs of  f
and g. Based only on the derivatives, state which diagram is the correct one, and
state also why each of the other two diagrams is incorrect.

y

x

g x( )

f x( )

Diagram A
y

x

g x( )

f x( )

Diagram B
y

x

g x( )

f x( )

Diagram C

SOLUTION

7 (a)

2 3 1

3 1 2

1 2
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x
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Do 
dy
dt  first, then do dx

dt
,  and then divide 

dy
dt
dx
dt

dy
dx
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⎜
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⎠
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⎠
⎟

=

7 (b) (i)
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=
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+
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+
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7 (b) (ii)

dy
dx

dy
dt
dx
dt

t
t

t
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⎛
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⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

=

−
+

+

=
−
+

4 1
1

2
1

4 1
1

3

2

3

( )
( )

( )

( )
( )

××
+

=
−
+

=
( ) ( )

( )
t t

t
x1

2
2 1

1
2

2

(© Tony Kelly & Kieran Mills)



f x x
x

f x
x

x

x x

( ) tan

( ) ( )( ) ( )(
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+
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⎜

⎞
⎠
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02 2 2 2 2 for all x.

A is correct: Both functions are decreasing with the sameslopes everywhere.
B is incorrect: Both slopes are not the same everywhere.
C is incorrect: Both functions are increasing.

7 (c) (i)

7 (c) (ii)

Therefore, the graph for f (x) is always decreasing.
g(x) has the same slope and is also decreasing.

y

x

g x( )

f x( )

Diagram A
y

x

g x( )

f x( )

Diagram B
y

x

g x( )

f x( )

Diagram C
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