Differentiation \& Applications (Q 6 \& 7, Paper 1)

2009
6 (a) Differentiate $\sin \left(3 x^{2}-x\right)$ with respect to x.
(b) (i) Differentiate \sqrt{x} with respect to x, from first principles.
(ii) An object moves in a straight line such that its distance from a fixed point is given by $s=\sqrt{t^{2}+1}$, where s is in metres and t is in seconds.
Find the speed of the object when $t=5$ seconds.
(c) The equation of a curve is $y=\frac{2}{x-3}$.
(i) Write down the equations of the asymptotes and hence sketch the curve.
(ii) Prove that no two tangents to the curve are perpendicular to each other.

Solution

6 (a)

$$
\begin{aligned}
y & =\sin \left(3 x^{2}-x\right) \\
\frac{d y}{d x} & =\left[\cos \left(3 x^{2}-x\right)\right] \times(6 x-1) \\
& =(6 x-1) \cos \left(3 x^{2}-x\right)
\end{aligned}
$$

$$
y=\sin f(x) \Rightarrow \frac{d y}{d x}=\cos f(x) \times f^{\prime}(x)
$$

6 (b) (i)

First Principles Proof 5. If $y=\sqrt{x} \Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$.
Proof

$$
\begin{aligned}
& y+\Delta y=\sqrt{x+\Delta x} \\
& y=\sqrt{x}
\end{aligned}
$$

$$
\Delta y=\sqrt{x+\Delta x}-\sqrt{x}=(\sqrt{x+\Delta x}-\sqrt{x}) \times \frac{(\sqrt{x+\Delta x}+\sqrt{x})}{(\sqrt{x+\Delta x}+\sqrt{x})}
$$

$$
=\frac{x+\Delta x-x}{(\sqrt{x+\Delta x}+\sqrt{x})}=\frac{\Delta x}{(\sqrt{x+\Delta x}+\sqrt{x})}
$$

$$
\therefore \frac{\Delta y}{\Delta x}=\frac{1}{(\sqrt{x+\Delta x}+\sqrt{x})} \Rightarrow \frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{1}{2 \sqrt{x}}
$$

6 (b) (ii)

$s=\sqrt{t^{2}+1}=\left(t^{2}+1\right)^{\frac{1}{2}}$
$v=\frac{d s}{d t}=\frac{1}{2}\left(t^{2}+1\right)^{-\frac{1}{2}}(2 t)=\frac{t}{\sqrt{t^{2}+1}}$
$v=\frac{d s}{d t}$
$v=\left(\frac{d s}{d t}\right)_{t=5}=\frac{5}{\sqrt{5^{2}+1}}=\frac{5}{\sqrt{26}} \mathrm{~m} / \mathrm{s}$

6 (c) (i)

Put the denominator equal to zero to find the vertical asymptote of the curve. Find $\lim _{x \rightarrow \infty} y$ to find the horizontal asymptote of the curve.

Vertical asymptote: $x-3=0 \Rightarrow x=3$
Horizontal asymptote: $\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty}\left(\frac{2}{x-3}\right)=0$

6 (c) (ii)

$$
\begin{aligned}
& y=\frac{2}{x-3}=2(x-3)^{-1} \\
& m=\frac{d y}{d x}=-2(x-2)^{-2}=-\frac{2}{(x-2)^{2}}
\end{aligned}
$$

The slope m of the tangent to the curve is negative for all values of x. A perpendicular tangent needs a positive slope as the product of perpendicular slopes is equal to -1 ($m_{1} \times m_{2}=-1$). Therefore, no two tangents are perpendicular as there are no tangents that have positive slopes.

7 (a) The equation of a curve is $x^{2}-y^{2}=25$. Find $\frac{d y}{d x}$ in terms of x and y.
(b) A curve is defined by the parametric equations

$$
x=\frac{3 t}{t^{2}-2} \text { and } y=\frac{6}{t^{2}-2} \text {, where } t \neq \pm \sqrt{2} \text {. }
$$

(i) Find $\frac{d y}{d x}$ in terms of t.
(ii) Find the equation of the tangent to the curve at the point given by $t=2$.
(c) The function $f(x)=x^{3}-3 x^{2}+3 x-4$ has only one root.
(i) Show that the root lies between 2 and 3 .

Anne and Barry are each using the Newton-Raphson method to approximate the root. Anne is starting with 2 as a first approximation and Barry is starting with 3.
(ii) Show that Anne's starting approximation is closer to the root than Barry's. (That is, show that the root is less than $2 \cdot 5$.)
(iii) Show, however, that Barry's next approximation is closer to the root than Anne’s.

Solution

7 (a)
$x^{2}-y^{2}=25$
$2 x-2 y \frac{d y}{d x}=0$
$x=y \frac{d y}{d x}$
$\frac{x}{y}=\frac{d y}{d x}$

$$
\begin{aligned}
& 7 \text { (b) (i) } \\
& y=\frac{6}{t^{2}-2}=6\left(t^{2}-2\right)^{-1} \\
& \frac{d y}{d t}=-6\left(t^{2}-2\right)^{-2}(2 t)=-\frac{12 t}{\left(t^{2}-2\right)^{2}} \\
& x=\frac{3 t}{t^{2}-2} \\
& \frac{d x}{d t}=\frac{\left(t^{2}-2\right) 3-3 t(2 t)}{\left(t^{2}-2\right)^{2}}=\frac{3 t^{2}-6-6 t^{2}}{\left(t^{2}-2\right)^{2}}=\frac{-3 t^{2}-6}{\left(t^{2}-2\right)^{2}}=-\frac{3 t^{2}+6}{\left(t^{2}-2\right)^{2}} \\
& \frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-\frac{12 t}{\left(t^{2}-2\right)^{2}}}{-\frac{3 t^{2}+6}{\left(t^{2}-2\right)^{2}}}=\frac{12 t}{3 t^{2}+6}=\frac{4 t}{t^{2}+2}
\end{aligned}
$$

7 (b) (ii)

$$
\begin{aligned}
& m=\left(\frac{d y}{d x}\right)_{t=2}=\frac{4(2)}{(2)^{2}+2}=\frac{8}{6}=\frac{4}{3} \\
& x=\frac{3(2)}{(2)^{2}-2}=\frac{6}{2}=3 \\
& y=\frac{6}{(2)^{2}-2}=\frac{6}{2}=3
\end{aligned}
$$

Equation of tangent t : Point (3, 3), $m=\frac{4}{3}$

$$
\begin{aligned}
t: 4 x-3 y+ & k=0 \\
(3,3) \in t \Rightarrow & 4(3)-3(3)+k=0 \\
& 12-9+k=0 \\
& 3+k=0 \\
& k=-3
\end{aligned}
$$

$$
t: 4 x-3 y-3=0
$$

7 (c) (i)

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+3 x-4 \\
& f(2)=(2)^{3}-3(2)^{2}+3(2)-4=8-12+6-4=-2<0 \\
& f(3)=(3)^{3}-3(3)^{2}+3(3)-4=27-27+9-4=5>0
\end{aligned}
$$

There is a root between 2 and 3 and the sign of the function changes for $f(2)$ and $f(3)$.

7 (c) (ii)

Anne: $x_{1}=2$
Barry: $x_{1}=3$

$$
f(2.5)=(2.5)^{3}-3(2.5)^{2}+3(2.5)-4=0.375>0
$$

As the $f(2.5)$ is greater than zero, the root lies between 2 and 2.5 which means that Anne's starting approximation is closer to the root.

7 (c) (iii)

$$
\begin{array}{l|l}
f(x)=x^{3}-3 x^{2}+3 x-4 \\
f^{\prime}(x)=3 x^{2}-6 x+3 & x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{array}
$$

Anne: $x_{2}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{-2}{3(2)^{2}-6(2)+3}$

$$
=2+\frac{2}{12-12+3}=2+\frac{2}{3}=\frac{8}{3} \approx 2.67
$$

Barry: $x_{2}=3-\frac{f(3)}{f^{\prime}(3)}=3-\frac{5}{3(3)^{2}-6(3)+3}$

$$
=3-\frac{5}{27-18+3}=3-\frac{5}{12}=\frac{31}{12} \approx 2.58
$$

