DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2005

6 (a) Differentiate with respect to x

(i)
$$(1+7x)^3$$
 (ii) $\sin^{-1}\left(\frac{x}{5}\right)$.

(b) Let
$$y = \frac{1 - \cos x}{1 + \cos x}$$
.

Show that
$$\frac{dy}{dx} = t + t^3$$
, where $t = \tan\left(\frac{x}{2}\right)$.

- (c) The equation of a curve is $y = \frac{x}{x-1}$, where $x \ne 1$.
 - (i) Show that the curve has no local maximum or local minimum point.
 - (ii) Write down the equations of the asymptotes and hence sketch the curve.
 - (iii) Show that the curve is its own image under the symmetry in the point of intersection of the asymptotes.

SOLUTION

6 (a) (i)

$$y = (1+7x)^3 \Rightarrow \frac{dy}{dx} = 3(1+7x)^2(7) = 21(1+7x)^2$$

6 (a) (ii)

$$y = \sin^{-1} f(x) \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - f(x)^2}} \times f'(x) \qquad \qquad 9$$

$$y = \sin^{-1}\left(\frac{x}{5}\right) \Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{x}{5}\right)^2}} \times \frac{1}{5} = \frac{1}{5\sqrt{1 - \frac{x^2}{25}}} = \frac{1}{5\sqrt{\frac{25 - x^2}{25}}} = \frac{1}{\sqrt{25 - x^2}}$$

6 (b)

Use the quotient rule: $y = \frac{1 - \cos x}{1 + \cos x}$

$$\Rightarrow \frac{dy}{dx} = \frac{(1+\cos x)(\sin x) - (1-\cos x)(-\sin x)}{(1+\cos x)^2}$$

$$= \frac{\sin x + \cos x \sin x + \sin x - \cos x \sin x}{(1 + \cos x)^2} = \frac{2 \sin x}{(1 + \cos x)^2}$$

The Quotient Rule: If $y = \frac{u}{v}$ then:

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \qquad$$

The second part of this question involves proving a trig identity.

You are required to prove that
$$\frac{dy}{dx} = t + t^3 \Rightarrow \frac{2\sin x}{(1 + \cos x)^2} = \tan\left(\frac{x}{2}\right) + \tan^3\left(\frac{x}{2}\right)$$

Deal with half angles: Let $A = \frac{x}{2} \Rightarrow x = 2A$

$$\frac{2\sin 2A}{(1+\cos 2A)^{2}} = \frac{4\sin A\cos A}{(1+\cos^{2} A - \sin^{2} A)^{2}}$$

$$= \frac{4\sin A\cos A}{(2\cos^{2} A)^{2}} = \frac{4\sin A\cos A}{4\cos^{4} A}$$

$$= \frac{\sin A}{\cos^{3} A}$$

$$\tan A + \tan^{3} A = \tan A(1+\tan^{2} A)$$

$$= \tan A(\sec^{2} A) = \frac{\sin A}{\cos A} \times \frac{1}{\cos^{2} A}$$

$$= \frac{\sin A}{\cos^{3} A}$$

$$\tan A + \tan^3 A = \tan A(1 + \tan^2 A)$$

$$= \tan A(\sec^2 A) = \frac{\sin A}{\cos A} \times \frac{1}{\cos^2 A}$$

$$= \frac{\sin A}{\cos^3 A}$$

6 (c) (i)

Turning Point
$$\Rightarrow \frac{dy}{dx} = 0$$

Turning Point $\Rightarrow \frac{dy}{dx} = 0$ To find the turning points set $\frac{dy}{dx} = 0$ and solve for x.

$$y = \frac{x}{x-1} \Rightarrow \frac{dy}{dx} = \frac{(x-1)1 - x(1)}{(x-1)^2} = -\frac{1}{(x-1)^2}$$

Turning points: $\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{1}{(x-1)^2} = 0 \Rightarrow 1 = 0$ [There are no solutions and therefore,

no local maximum or minimum point.]

6 (c) (ii)

FINDING THE VERTICAL ASYMPTOTE: Put the denominator equal to zero.

FINDING THE HORIZONTAL ASYMPTOTE: Find lim y.

HOW TO PLOT RATIONAL CURVES

STEPS

- 1. Find the vertical and horizontal asymptotes.
- 2. Build up a table by choosing two points to the left and two points to the right of the vertical asymptote.
- 3. Plot the curves skimming along the asymptotes.

Vertical Asymptote: Put $x-1=0 \Rightarrow x=1$

Horizontal Asymptote:
$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{x}{x - 1} = \lim_{x \to \infty} \frac{x}{x(1 - \frac{1}{x})} = 1$$

Asymptotes: x = 1, y = 1

х	у	Point
-1	$\frac{1}{2}$	$(-1, \frac{1}{2})$
0	0	(0, 0)
1 Asymptote		
2	2	(2, 2)
3	$\frac{3}{2}$	$(3, \frac{3}{2})$

6 (c) (iii)

Choose any point (x, y) on the curve and translate it through (1, 1) to produce (x', y').

$$(x, y) \rightarrow (1, 1) \rightarrow (2-x, 2-y)$$

Replace x and y in the equation of the curve by 2-x and 2-y.

$$y = \frac{x}{x-1} \Rightarrow 2 - y = \frac{2-x}{2-x-1} \Rightarrow 2 - y = \frac{2-x}{1-x}$$

$$\Rightarrow 2 - \frac{2 - x}{1 - x} = y \Rightarrow \frac{2(1 - x) - 1(2 - x)}{1 - x} = y$$

$$\Rightarrow \frac{2-2x-2+x}{1-x} = y \Rightarrow \frac{-x}{1-x} = y \Rightarrow \frac{x}{x-1} = y$$

- 7 (a) Find from first principles the derivative of x^2 with respect to x.
 - (b) The parametric equations of a curve are:

$$x = 8 + \ln t^2$$

 $y = \ln(2 + t^2)$, where $t > 0$.

- (i) Find $\frac{dy}{dx}$ in terms of t and calculate its value at $t = \sqrt{2}$.
- (ii) Find the slope of the tangent to the curve $xy^2 + y = 6$ at the point (1, 2).
- (c) (i) Write down a quadratic equation whose roots are $\pm \sqrt{k}$.
 - (ii) Hence use the Newton-Raphson method to show that the rule $u_{n+1} = \frac{(u_n)^2 + k}{2u_n}$ can be used to find increasingly accurate approximations for \sqrt{k} .
 - (iii) Using the above rule and taking $\frac{3}{2}$ as the first approximation for $\sqrt{3}$, find the third approximation, as a fraction.

SOLUTION

7 (a)

$$y + \Delta y = (x + \Delta x)^{2} = x^{2} + 2x\Delta x + (\Delta x)^{2}$$

$$y = x^{2}$$

$$\Delta y = 2x\Delta x + (\Delta x)^{2} \text{ by subtraction}$$

$$\therefore \frac{\Delta y}{\Delta x} = 2x + \Delta x \Rightarrow \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2x$$

7 (b) (i)

PARAMETRICS: Do
$$\frac{dy}{dt}$$
 first, then do $\frac{dx}{dt}$, and then divide $\frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{dy}{dx}$

$$x = 8 + \ln t^2 \Rightarrow \frac{dx}{dt} = \frac{2t}{t^2} = \frac{2}{t}$$

$$y = \ln(2 + t^2) \Rightarrow \frac{dy}{dt} = \frac{2t}{2 + t^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{2t}{2 + t^2}}{\frac{2}{t}} = \frac{2t}{2 + t^2} \times \frac{t}{2} = \frac{t^2}{2 + t^2}$$

$$\left(\frac{dy}{dx}\right)_{t=\sqrt{2}} = \frac{(\sqrt{2})^2}{2+(\sqrt{2})^2} = \frac{2}{2+2} = \frac{1}{2}$$

7 (b) (ii)

$$xy^{2} + y = 6 \Rightarrow \left\{ x(2y) \frac{dy}{dx} + y^{2}(1) \right\} + 1 \frac{dy}{dx} = 0 \text{ [Notice the product]}$$

$$\Rightarrow 2xy \frac{dy}{dx} + y^{2} + \frac{dy}{dx} = 0 \Rightarrow (2xy+1) \frac{dy}{dx} = -y^{2}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y^{2}}{(2xy+1)}$$

$$\left(\frac{dy}{dx}\right)_{x=0} = -\frac{2^{2}}{(2(1)(2)+1)} = -\frac{4}{4+1} = -\frac{4}{5}$$

7 (c) (i)

Roots:
$$\sqrt{k}$$
, $-\sqrt{k}$

Quadratic Equation:
$$(x - \sqrt{k})(x + \sqrt{k}) = 0 \Rightarrow x^2 - k = 0$$

7 (c) (ii)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 16

For
$$n = 1$$
: $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$.

For
$$n = 2$$
: $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$.

STEPS

- 1. Write down f(x).
- **2**. Do f'(x).
- 3. Substitute starting value x_n into formula **16**.
- 4. Repeat if asked.

$$f(x) = x^{2} - k \Rightarrow f'(x) = 2x$$

$$f(u_{n}) = (u_{n})^{2} - k \text{ and } f'(u_{n}) = 2u_{n}$$

$$u_{n+1} = u_{n} - \frac{f(u_{n})}{f'(u_{n})} = u_{n} - \frac{(u_{n})^{2} - k}{2u_{n}} = \frac{2(u_{n})^{2} - (u_{n})^{2} + k}{2u_{n}} = \frac{(u_{n})^{2} + k}{2u_{n}}$$

7 (c) (iii)

$$u_1 = \frac{3}{2}, k = 3$$

$$u_2 = \frac{(u_1)^2 + 3}{2u_1} = \frac{(\frac{3}{2})^2 + 3}{2(\frac{3}{2})} = \frac{\frac{9}{4} + 3}{3} = \frac{\frac{21}{4}}{3} = \frac{7}{4}$$

$$u_3 = \frac{(u_2)^2 + 3}{2u_2} = \frac{\left(\frac{7}{4}\right)^2 + 3}{2\left(\frac{7}{4}\right)} = \frac{\frac{49}{16} + 3}{\frac{7}{2}} \times \frac{16}{16} = \frac{49 + 48}{56} = \frac{97}{56}$$