Differentiation \& Applications (Q 6 \& 7, Paper 1)

2011

6. (a) Differentiate $\cos ^{2} x$ with respect to x.
(b) The equation of a curve is $y=e^{-x^{2}}$.
(i) Find $\frac{d y}{d x}$.
(ii) Find the co-ordinates of the turning point of the curve.
(iii) Determine whether this turning point is a local maximum or a local minimum.
(c) The function f is defined as $x \rightarrow \frac{2 x}{x+1}$, where $x \in \mathbb{R} \backslash\{-1\}$.
(i) Find the equations of the asymptotes of the curve $y=f(x)$.
(ii) P and Q are distinct points on the curve $y=f(x)$.

The tangent at Q is parallel to the tangent at P.
The co-ordinates of P are $(1,1)$.
Find the co-ordinates of Q.
(iii) Verify that the point of intersection of the asymptotes is the midpoint of $[P Q]$.

Answers

6 (a) $-2 \cos x \sin x$
(b) (i) $\frac{d y}{d x}=-2 x e^{-x^{2}}$
(ii) $(0,1)$
(iii) Localmaximum
(c) (i) $x=-1, y=2$
(ii) $Q(-3,3)$
7. (a) Find the slope of the tangent to the curve $x^{2}+y^{3}=x-2$ at the point $(3,-2)$.
(b) A curve is defined by the parametric equations
$x=\frac{t-1}{t+1}$ and $y=\frac{-4 t}{(t+1)^{2}}$, where $t \neq-1$.
(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
(ii) Hence find $\frac{d y}{d x}$, and express your answer in terms of x.
(c) The functions f and g are defined on the domain $x \in \mathbb{R} \backslash\{-1,0\}$ as follows:
$f: x \rightarrow \tan ^{-1}\left(\frac{-x}{x+1}\right)$ and $g: x \rightarrow \tan ^{-1}\left(\frac{x+1}{x}\right)$.
(i) Show that $f^{\prime}(x)=\frac{-1}{2 x^{2}+2 x+1}$.
(ii) It can be shown that $f^{\prime}(x)=g^{\prime}(x)$.

One of the three diagrams A, B, or C below represents parts of the graphs of f and g. Based only on the derivatives, state which diagram is the correct one, and state also why each of the other two diagrams is incorrect.

Diagram A

Diagram B

Diagram C

Answers

7 (a) $-\frac{5}{12}$
(b) (i) $\frac{d x}{d t}=\frac{2}{(t+1)^{2}}, \frac{d y}{d t}=\frac{4 t-4}{(t+1)^{3}}$
(ii) $\frac{d y}{d x}=2 x$
(c) (ii) A is correct: Both functions are decreasing with the same slopes everywhere.
B is incorrect: Both slopes are not the same everywhere.
C is incorrect: Both functions are increasing.

