DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2010

- 6 (a) The equation x³ + x² 4 = 0 has only one real root. Taking x₁ = ³/₂ as the first approximation to the root, use the Newton-Raphson method to find x₂, the second approximation.
 (b) Parametric equations of a curve are: x = ^{2t-1}/_{t+2}, y = ^t/_{t+2}, where t ∈ ℝ \{-2}.
 (i) Find ^{dy}/_{dx}.
 (ii) What does your answer to part (i) tell you about the shape of the graph?
 (c) A curve is defined by the equation x²y³ + 4x + 2y = 12.
 (i) Find ^{dy}/_{dx} in terms of x and y.
 - (ii) Show that the tangent to the curve at the point (0, 6) is also the tangent to it at the point (3, 0).
 - 7 (a) Differentiate x^2 with respect to x from first principles.

(b) Let
$$y = \frac{\cos x + \sin x}{\cos x - \sin x}$$
.
(i) Find $\frac{dy}{dx}$.

(ii) Show that
$$\frac{dy}{dx} = 1 + y^2$$
.

- (c) The function is defined for x > -1.
 - (i) Show that the curve $f(x) = (1+x)\log_e(1+x)$ has a turning point at $\left(\frac{1-e}{e}, -\frac{1}{e}\right)$.
 - (ii) Determine whether the turning point is a local maximum or a local minimum.

Answers 6 (a) $\frac{4}{3}$ (b) (i) $\frac{2}{5}$ (ii) It is a straight line. (c) (i) $\frac{-2xy^3 - 4}{3x^2y^2 + 2}$ 7 (b) (i) $\frac{2}{(\cos x - \sin x)^2}$ (c) (ii) Local minimum