Differentiation \& Applications (Q 6 \& 7, Paper 1)

2010
6 (a) The equation $x^{3}+x^{2}-4=0$ has only one real root.
Taking $x_{1}=\frac{3}{2}$ as the first approximation to the root, use the Newton-Raphson method to find x_{2}, the second approximation.
(b) Parametric equations of a curve are:

$$
x=\frac{2 t-1}{t+2}, y=\frac{t}{t+2} \text {, where } t \in \mathbf{R} \backslash\{-2\} .
$$

(i) Find $\frac{d y}{d x}$.
(ii) What does your answer to part (i) tell you about the shape of the graph?
(c) A curve is defined by the equation $x^{2} y^{3}+4 x+2 y=12$.
(i) Find $\frac{d y}{d x}$ in terms of x and y.
(ii) Show that the tangent to the curve at the point $(0,6)$ is also the tangent to it at the point $(3,0)$.

7 (a) Differentiate x^{2} with respect to x from first principles.
(b) Let $y=\frac{\cos x+\sin x}{\cos x-\sin x}$.
(i) Find $\frac{d y}{d x}$.
(ii) Show that $\frac{d y}{d x}=1+y^{2}$.
(c) The function is defined for $x>-1$.
(i) Show that the curve $f(x)=(1+x) \log _{e}(1+x)$ has a turning point at $\left(\frac{1-e}{e},-\frac{1}{e}\right)$.
(ii) Determine whether the turning point is a local maximum or a local minimum.

```
Answers
6 (a) \(\frac{4}{3}\)
    (b) (i) \(\frac{2}{5} \quad\) (ii) It is a straight line.
    (c) (i) \(\frac{-2 x y^{3}-4}{3 x^{2} y^{2}+2}\)
7 (b) (i) \(\frac{2}{(\cos x-\sin x)^{2}}\)
    (c) (ii) Local minimum
```

