DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2009

- 6 (a) Differentiate $\sin(3x^2 x)$ with respect to x.
 - (b) (i) Differentiate \sqrt{x} with respect to x, from first principles.
 - (ii) An object moves in a straight line such that its distance from a fixed point is given by $s = \sqrt{t^2 + 1}$, where *s* is in metres and *t* is in seconds. Find the speed of the object when t = 5 seconds.
 - (c) The equation of a curve is $y = \frac{2}{x-3}$.
 - (i) Write down the equations of the asymptotes and hence sketch the curve.
 - (ii) Prove that no two tangents to the curve are perpendicular to each other.
- 7 (a) The equation of a curve is $x^2 y^2 = 25$. Find $\frac{dy}{dx}$ in terms of x and y.
 - (b) A curve is defined by the parametric equations

$$x = \frac{3t}{t^2 - 2}$$
 and $y = \frac{6}{t^2 - 2}$, where $t \neq \pm \sqrt{2}$.

- (i) Find $\frac{dy}{dx}$ in terms of *t*.
- (ii) Find the equation of the tangent to the curve at the point given by t = 2.
- (c) The function $f(x) = x^3 3x^2 + 3x 4$ has only one root. (i) Show that the root lies between 2 and 2
 - (i) Show that the root lies between 2 and 3.

Anne and Barry are each using the Newton-Raphson method to approximate the root. Anne is starting with 2 as a first approximation and Barry is starting with 3.

- (ii) Show that Anne's starting approximation is closer to the root than Barry's. (That is, show that the root is less than 2.5.)
- (iii) Show, however, that Barry's next approximation is closer to the root than Anne's.

Answers 6 (a) $(6x-1)\cos(3x^2 - x)$ (b) (ii) $\frac{5}{\sqrt{26}}$ m/s (c) (i) x = 3, y = 07 (a) $\frac{dy}{dx} = \frac{x}{y}$ (b) (i) $\frac{dy}{dx} = \frac{4t}{t^2 + 2}$ (ii) 4x - 3y - 3 = 0(c) (iii) Barry: $x_2 = \frac{31}{12} \approx 2.58$ Anne: $x_2 = \frac{8}{3} \approx 2.67$