Differentiation \& Applications (Q 6 \& 7, Paper 1)

2007

6 (a) Differentiate $\frac{x^{2}-1}{x^{2}+1}$ with respect to x.
(b) (i) Differentiate $\frac{1}{x}$ with respect to x from first principles.
(ii) Find the equation of the tangent to $y=\frac{1}{x}$ at the point (2, $\frac{1}{2}$).
(c) Let $f(x)=\tan ^{-1} \frac{x}{2}$ and $g(x)=\tan ^{-1} \frac{2}{x}$, for $x>0$.
(i) Find $f^{\prime}(x)$ and $g^{\prime}(x)$.
(ii) Hence, show that $f(x)$ and $g(x)$ is constant.
(iii) Find the value of $f(x)+g(x)$.

7 (a) Taking 1 as the first approximation of a root of $x^{3}+2 x-4=0$, use the Newton-Raphson method to calculate the second approximation of this root.
(b) (i) Find the equation of the tangent to the curve

$$
3 x^{2}+y^{2}=28 \text { at the point }(2,-4) .
$$

(ii) $x=e^{t} \cos t$ and $y=e^{t} \sin t$. Show that $\frac{d y}{d x}=\frac{x+y}{x-y}$.
(c) $f(x)=\log _{e} 3 x-3 x$, where $x>0$.
(i) Show that $\left(\frac{1}{3},-1\right)$ is a local maximum point of $f(x)$.
(ii) Deduce that the graph of $f(x)$ does not intersect the x-axis.

Answers

6 (a) $\frac{4 x}{\left(x^{2}+1\right)^{2}}$
(b) (ii) $x+4 y-4=0$
(c) (i) $f^{\prime}(x)=\frac{2}{x^{2}+4}, g^{\prime}(x)=-\frac{2}{x^{2}+4}$
(ii) $f^{\prime}(x)+g^{\prime}(x)=0 \Rightarrow f(x)+g(x)=c$, a constant. When you differentiate a constant, you get zero.
(iii) $\frac{\pi}{2}$
$7 \quad$ (a) $\frac{6}{5}$
(b) (i) $3 x-2 y-14=0$

