DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2007

6 (a) Differentiate
$$\frac{x^2 - 1}{x^2 + 1}$$
 with respect to x.

- (b) (i) Differentiate $\frac{1}{x}$ with respect to x from first principles.
 - (ii) Find the equation of the tangent to $y = \frac{1}{x}$ at the point $(2, \frac{1}{2})$.
- (c) Let $f(x) = \tan^{-1} \frac{x}{2}$ and $g(x) = \tan^{-1} \frac{2}{x}$, for x > 0.
 - (i) Find f'(x) and g'(x).
 - (ii) Hence, show that f(x) and g(x) is constant.
 - (iii) Find the value of f(x) + g(x).
- 7 (a) Taking 1 as the first approximation of a root of $x^3 + 2x 4 = 0$, use the Newton-Raphson method to calculate the second approximation of this root.
 - (b) (i) Find the equation of the tangent to the curve $3x^2 + y^2 = 28$ at the point (2, -4).

(ii)
$$x = e^t \cos t$$
 and $y = e^t \sin t$. Show that $\frac{dy}{dx} = \frac{x+y}{x-y}$.

- (c) $f(x) = \log_e 3x 3x$, where x > 0.
 - (i) Show that $(\frac{1}{3}, -1)$ is a local maximum point of f(x).
 - (ii) Deduce that the graph of f(x) does not intersect the *x*-axis.

Answers

6 (a)
$$\frac{4x}{(x^2+1)^2}$$

(b) (ii) $x+4y-4=0$
(c) (i) $f'(x) = \frac{2}{x^2+4}, g'(x) = -\frac{2}{x^2+4}$
(ii) $f'(x) + g'(x) = 0 \Rightarrow f(x) + g(x) = c$, a constant. When you differentiate a constant, you get zero.
(iii) $\frac{\pi}{2}$
7 (a) $\frac{6}{5}$
(b) (i) $3x-2y-14=0$