Differentiation \& Applications (Q 6 \& 7, Paper 1)

2006

6 (a) Differentiate $\sqrt{x}(x+2)$ with respect to x
(b) The equation of a curve is $y=3 x^{4}-2 x^{3}-9 x^{2}+8$.
(i) Show that the curve has a local maximum at the point $(0,8)$.
(ii) Find the coordinates of the two local minimum points on the curve.
(iii) Draw a sketch of the curve.
(c) Prove by induction that $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, n \geq 1, n \in \mathbf{N}$.

7 (a) Taking $x_{1}=2$ as the first approximation to the real root of the equation $x^{3}+x-9=0$, use the Newton-Raphson method to find x_{2}, the second approximation.
(b) The parametric equations of a curve are:

$$
\begin{aligned}
& x=3 \cos \theta-\cos ^{3} \theta \\
& y=3 \sin \theta-\sin ^{3} \theta, \text { where } 0<\theta<\frac{\pi}{2} .
\end{aligned}
$$

(i) Find $\frac{d y}{d \theta}$ and $\frac{d x}{d \theta}$.
(ii) Hence show that $\frac{d y}{d x}=\frac{-1}{\tan ^{3} \theta}$.
(c) Given $y=\ln \left(\frac{3+x}{\sqrt{9-x^{2}}}\right)$, find $\frac{d y}{d x}$ and express it in the form $\frac{a}{b-x^{n}}$.

Answers

6 (a) $\frac{3}{2} \sqrt{x}+\frac{1}{\sqrt{x}}$
6 (b) (ii) $(-1,4),\left(\frac{3}{2},-\frac{61}{16}\right)$

7 (a) $\frac{25}{13}$
7 (b) (i) $\frac{d y}{d \theta}=3 \cos ^{3} \theta, \frac{d x}{d \theta}=-3 \sin ^{3} \theta$
7 (c) $\frac{3}{9-x^{2}}$

