DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2006

- 6 (a) Differentiate $\sqrt{x(x+2)}$ with respect to x
 - (b) The equation of a curve is $y = 3x^4 2x^3 9x^2 + 8$.
 - (i) Show that the curve has a local maximum at the point (0, 8).
 - (ii) Find the coordinates of the two local minimum points on the curve.
 - (iii) Draw a sketch of the curve.
- (c) Prove by induction that $\frac{d}{dx}(x^n) = nx^{n-1}, n \ge 1, n \in \mathbb{N}$.
- 7 (a) Taking $x_1 = 2$ as the first approximation to the real root of the equation $x^3 + x 9 = 0$, use the Newton-Raphson method to find x_2 , the second approximation.
 - (b) The parametric equations of a curve are:

$$x = 3\cos\theta - \cos^{3}\theta$$

$$y = 3\sin\theta - \sin^{3}\theta, \text{ where } 0 < \theta < \frac{\pi}{2}.$$
(i) Find $\frac{dy}{d\theta}$ and $\frac{dx}{d\theta}$.
(ii) Hence show that $\frac{dy}{dx} = \frac{-1}{\tan^{3}\theta}.$

(c) Given
$$y = \ln\left(\frac{3+x}{\sqrt{9-x^2}}\right)$$
, find $\frac{dy}{dx}$ and express it in the form $\frac{a}{b-x^n}$.

Answers
6 (a)
$$\frac{3}{2}\sqrt{x} + \frac{1}{\sqrt{x}}$$

6 (b) (ii) (-1, 4), $(\frac{3}{2}, -\frac{61}{16})$
7 (a) $\frac{25}{13}$
7 (b) (i) $\frac{dy}{d\theta} = 3\cos^3\theta$, $\frac{dx}{d\theta} = -3\sin^3\theta$
7 (c) $\frac{3}{9-x^2}$