DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2005

6 (a) Differentiate with respect to x (i) $(1+7x)^3$ (ii) $\sin^{-1}\left(\frac{x}{x}\right)$.

(b) Let
$$y = \frac{1 - \cos x}{1 + \cos x}$$
.
Show that $\frac{dy}{dx} = t + t^3$, where $t = \tan\left(\frac{x}{2}\right)$.

- (c) The equation of a curve is $y = \frac{x}{x-1}$, where $x \neq 1$.
 - (i) Show that the curve has no local maximum or local minimum point.
 - (ii) Write down the equations of the asymptotes and hence sketch the curve.
 - (iii) Show that the curve is its own image under the symmetry in the point of intersection of the asymptotes.

7 (a) Find from first principles the derivative of x^2 with respect to *x*.

(b) (i) The parametric equations of a curve are:

$$x = 8 + \ln t^{2}$$

 $y = \ln(2 + t^{2})$, where $t > 0$

Find $\frac{dy}{dx}$ in terms of *t* and calculate its value at $t = \sqrt{2}$.

- (ii) Find the slope of the tangent to the curve $xy^2 + y = 6$ at the point (1, 2).
- (c) (i) Write down a quadratic equation whose roots are $\pm \sqrt{k}$.
 - (ii) Hence use the Newton-Raphson method to show that the rule $u_{n+1} = \frac{(u_n)^2 + k}{2u_n}$

can be used to find increasingly accurate approximations for \sqrt{k} .

(iii) Using the above rule and taking $\frac{3}{2}$ as the first approximation for $\sqrt{3}$, find the third approximation, as a fraction.

Answers