## Differentiation \& Applications (Q 6 \& 7, Paper 1)

## 2004

6 (a) Differentiate $\frac{1}{2+5 x}$ with respect to $x$.
(b) (i) Given $y=\tan ^{-1} x$, find the value of $\frac{d y}{d x}$ at $x=\sqrt{2}$.
(ii) Differentiate, from first principles, $\cos x$ with respect to $x$.
(c) Let $f(x)=x^{3}+6 x^{2}+15 x+36, x \in \mathbf{R}$.
(i) Show that $f^{\prime}(x)$ can be written in the form $3\left[(x+a)^{2}+b\right], a, b \in \mathbf{R}$, where $f^{\prime}(x)$ is the first derivative of $f(x)$.
(ii) Hence show that $f(x)=0$ has only one real root.

7 (a) An object's distance from a fixed point is given by $s=12+24 t-3 t^{2}$, where $s$ is in metres and $t$ is in seconds. Find the speed of the object when $t=3$ seconds.
(b) The parametric equations of a curve are:

$$
\begin{aligned}
& x=2 \theta-\sin 2 \theta \\
& y=1-\cos 2 \theta, \text { where } 0<\theta<\pi .
\end{aligned}
$$

(i) Find $\frac{d y}{d x}$.
(ii) Show that the tangent to the curve at $\theta=\frac{\pi}{6}$ is perpendicular to the tangent at $\theta=\frac{2 \pi}{3}$.
(c) Given that $x=\frac{e^{2 y}-1}{e^{2 y}+1}$,
(i) show that $e^{2 y}=\frac{1+x}{1-x}$
(ii) show that $\frac{d y}{d x}$ can be expressed in the form $\frac{p}{1-x^{p}}, p, q \in \mathbf{N}$.

## Answers

6 (a) $\frac{d y}{d x}=-\frac{5}{(2+5 x)^{2}}$
6 (b) (i) $\left(\frac{d y}{d x}\right)_{x=\sqrt{2}}=\frac{1}{3}$
6 (c) (i) $f^{\prime}(x)=3\left[(x+2)^{2}+1\right] \quad$ (ii) $f^{\prime}(x)=3\left[(x+2)^{2}+1\right]>0$
7 (a) $\left(\frac{d s}{d t}\right)_{t=3}=6 \mathrm{~m} \mathrm{~s}^{-1}$
7 (b) (i) $\frac{d y}{d x}=\frac{\sin 2 \theta}{1-\cos 2 \theta}$
7 (c) (ii) $\frac{d y}{d x}=\frac{1}{1-x^{2}}$

