Differentiation \& Applications (Q 6 \& 7, Paper 1)

2003

6 (a) Differentiate $\sqrt{1+4 x}$ with respect to x.
(b) Show that the equation $x^{3}-4 x-2=0$ has a root between 2 and 3.

Taking $x_{1}=2$ as the first approximation to this root, use the Newton-Raphson method to find x_{3}, the third approximation. Give your answer correct to two decimal places.
(c) The function $f(x)=\frac{1}{1-x}$ is defined for $x \in \mathbf{R} \backslash\{1\}$.
(i) Prove that the graph of f has no turning points and no points of inflection.
(ii) Write down the reason that justifies the statement: " f is increasing at every value of $x \in \mathbf{R} \backslash\{1\}$."
(iii) Given that $y=x+k$ is a tangent to the graph of f where k is a real number, find the two possible values of k.

7 (a) Differentiate each of the following with respect to x :
(i) $\cos ^{4} x$
(ii) $\sin ^{-1}\left(\frac{x}{5}\right)$.
(b) (i) The parametric equations of a curve are:

$$
\begin{aligned}
& x=\cos t+t \sin t \\
& y=\sin t-t \cos t \text { where } 0<t<\frac{\pi}{2} .
\end{aligned}
$$

Find $\frac{d y}{d x}$ and write your answer in its simplest form.
(ii) Given that $\frac{1}{x}+\frac{1}{y}=\frac{1}{6}$, find the value of $\frac{d y}{d x}$ at the point $(2,-3)$.
(c) (i) Given that $y=\ln \frac{1+x^{2}}{1-x^{2}}$ for $0<x<1$, find $\frac{d y}{d x}$ and write your answer in the form $\frac{k x}{1-x^{k}}$ where $k \in \mathbf{N}$.
(ii) Given that $f(\theta)=\sin (\theta+\pi) \cos (\theta-\pi)$, find the derivative of $f(\theta)$ and express it in the form $\cos n \theta$ where $n \in \mathbf{Z}$.

Answers

6 (a) $\frac{d y}{d x}=\frac{2}{\sqrt{1+4 x}}$
6 (b) $x_{3}=2 \cdot 22$
6 (c) (iii) $k=-3,1$
7 (a) (i) $\frac{d y}{d x}=-4 \cos ^{3} x \sin x$ (ii) $\frac{d y}{d x}=\frac{1}{\sqrt{25-x^{2}}}$
7 (b) (i) $\frac{d y}{d x}=\tan t$
(ii) $\left(\frac{d y}{d x}\right)_{(2,-3)}=-\frac{9}{4}$

7 (c) (i) $\frac{d y}{d x}=\frac{4 x}{1-x^{4}}$
(ii) $f^{\prime}(\theta)=\cos 2 \theta$

