DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2002

(

- 6 (a) Differentiate $(x^4 + 1)^5$ with respect to x.
 - (b) (i) Prove, from first principles, the addition rule:

if
$$f(x) = u(x) + v(x)$$
 then $\frac{df}{dx} = \frac{du}{dx} + \frac{dv}{dx}$

- (ii) Given $y = 2x \sin 2x$, find $\frac{dy}{dx}$. Give your answer in the form $k \sin^2 x$, where $k \in \mathbb{Z}$.
- (c) The function $f(x) = ax^3 + bx^2 + cx + d$ has a maximum point at (0, 4) and a point of inflection at (1, 0). Find the values of *a*, *b*, *c* and *d*.
- 7 (a) Find the slope of the tangent to the curve $9x^2 + 4y^2 = 40$ at the point (2, 1).
 - (b) (i) Given that $y = \sin^{-1} 10x$, evaluate $\frac{dy}{dx}$ when $x = \frac{1}{20}$.
 - (ii) The parametric equations of a curve are $x = \ln(1+t^2)$ and $y = \ln 2t$, where

$$t \in \mathbf{R}, t > 0$$
. Find the value of $\frac{dy}{dx}$ when $t = \sqrt{5}$.

c) Let
$$f(x) = \frac{f(x)}{2}$$
.
(i) Show that $f''(x) = f(x)$, where $f''(x)$ is the second derivative of $f(x)$.

 $\rho^{x} + \rho^{-x}$

(ii) Show that $\frac{f'(2x)}{f'(x)} = 2f(x)$ when $x \neq 0$ and where f'(x) is the first derivative of f(x).

Answers
6 (a) $\frac{dy}{dx} = 20x^3(x^4 + 1)^4$
6 (b) (ii) $\frac{dy}{dx} = 4\sin^2 x$
6 (c) $a = 2, b = -6, c = 0, d = 4; f(x) = 2x^3 - 6x^2 + 4$
7 (a) $\left(\frac{dy}{dx}\right)_{(2,1)} = -\frac{9}{2}$
7 (b) (i) $\left(\frac{dy}{dx}\right)_{x=\frac{1}{20}} = \frac{20}{\sqrt{3}}$ (ii) $\left(\frac{dy}{dx}\right)_{t=\sqrt{5}} = \frac{3}{5}$