Differentiation \& Applications (Q 6 \& 7, Paper 1)

2002
6 (a) Differentiate $\left(x^{4}+1\right)^{5}$ with respect to x.
(b) (i) Prove, from first principles, the addition rule:
if $f(x)=u(x)+v(x)$ then $\frac{d f}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$.
(ii) Given $y=2 x-\sin 2 x$, find $\frac{d y}{d x}$. Give your answer in the form $k \sin ^{2} x$, where $k \in \mathbf{Z}$.
(c) The function $f(x)=a x^{3}+b x^{2}+c x+d$ has a maximum point at $(0,4)$ and a point of inflection at $(1,0)$. Find the values of a, b, c and d.

7 (a) Find the slope of the tangent to the curve $9 x^{2}+4 y^{2}=40$ at the point $(2,1)$.
(b) (i) Given that $y=\sin ^{-1} 10 x$, evaluate $\frac{d y}{d x}$ when $x=\frac{1}{20}$.
(ii) The parametric equations of a curve are $x=\ln \left(1+t^{2}\right)$ and $y=\ln 2 t$, where $t \in \mathbf{R}, t>0$. Find the value of $\frac{d y}{d x}$ when $t=\sqrt{5}$.
(c) Let $f(x)=\frac{e^{x}+e^{-x}}{2}$.
(i) Show that $f^{\prime \prime}(x)=f(x)$, where $f^{\prime \prime}(x)$ is the second derivative of $f(x)$.
(ii) Show that $\frac{f^{\prime}(2 x)}{f^{\prime}(x)}=2 f(x)$ when $x \neq 0$ and where $f^{\prime}(x)$ is the first derivative of $f(x)$.

Answers

6 (a) $\frac{d y}{d x}=20 x^{3}\left(x^{4}+1\right)^{4}$
6 (b) (ii) $\frac{d y}{d x}=4 \sin ^{2} x$
6 (c) $a=2, b=-6, c=0, d=4 ; f(x)=2 x^{3}-6 x^{2}+4$
7 (a) $\left(\frac{d y}{d x}\right)_{(2,1)}=-\frac{9}{2}$
7 (b) (i) $\left(\frac{d y}{d x}\right)_{x=\frac{1}{20}}=\frac{20}{\sqrt{3}} \quad$ (ii) $\left(\frac{d y}{d x}\right)_{t=\sqrt{5}}=\frac{3}{5}$

