DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

2001

- 7 (a) Taking $x_1 = 1$ as the first approximation to the real root of the equation $x^3 + x^2 1 = 0$, use the Newton-Rhapson method to find x_2 , the second approximation.
 - (b) (i) Differentiate $\tan^{-1} 7x$ with respect to *x*.
 - (ii) Given that $y = \sin x \cos x$, find $\frac{dy}{dx}$ and express it in the form $\cos nx$ where $n \in \mathbb{Z}$.
 - (c) Let $g(x) = x^2 + \frac{a}{x^2}$ where *a* is a real number and $x \in \mathbf{R}$, $x \neq 0$. Given that g(x) has a turning point at x = 2,
 - (i) find the value of *a*
 - (ii) prove that g(x) has no local maximum points.

Answers
6 (a)
$$\frac{dy}{dx} = \frac{1 - x^2}{(1 + x^2)^2}$$

6 (b) (i) $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$
6 (c) (i) $\frac{dx}{dt} = te^t(t+2), \ \frac{dy}{dt} = 1 + \frac{2}{t}$
7 (a) $x_2 = \frac{4}{5} = 0.8$
7 (b) (i) $\frac{dy}{dx} = \frac{7}{1 + 49x^2}$ (ii) $\frac{dy}{dx} = \cos 2x$
7 (c) (i) $a = 16$