## Differentiation \& Applications (Q 6 \& 7, Paper 1)

2000
6 (a) Differentiate with respect to $x$
(i) $(1+5 x)^{3}$
(ii) $\frac{7 x}{x-3}, x \neq 3$.
(b) (i) Prove, from first principles, the product rule

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

where $u=u(x)$ and $v=v(x)$.
(ii) Given $y=\sin ^{-1}(2 x-1)$, find $\frac{d y}{d x}$ and calculate its value at $x=\frac{1}{2}$.
(c) $f(x)=\frac{1}{x+1}$ where $x \in \mathbf{R}, x \neq-1$.
(i) Find the equations of the asymptotes of the graph of $f(x)$.
(ii) Prove that the graph of $f(x)$ has no turning points or points of inflection.
(iii) If the tangents to the curve at $x=x_{1}$ and $x=x_{2}$ are parallel and if $x_{1} \neq x_{2}$, show that

$$
x_{1}+x_{2}+2=0 .
$$

7 (a) Find the slope of the tangent to the curve $x^{2}-x y+y^{2}=1$ at the point $(1,0)$.
(b) The parametric equations of a curve are $x=\cos ^{3} t$ and $y=\sin ^{3} t, 0 \leq t \leq \frac{\pi}{2}$.
(i) Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$ in terms of $t$.
(ii) Hence, find integers $a$ and $b$ such that $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\frac{a}{b}(\sin t)^{2}$.
(c) $f(x)=\frac{\ln x}{x}$ where $x>0$.
(i) Show that the maximum of $f(x)$ occurs at the point ( $e, \frac{1}{e}$ ).
(ii) Hence, show that $x^{e} \leq e^{x}$ for all $x>0$.

## Answers

6 (a) (i) $15(1+5 x)^{2}$ (ii) $-\frac{21}{(x-3)^{2}}$
7 (a) 2
6 (b) (ii) 2
7 (b) (i) $\frac{d x}{d t}=-3 \cos ^{2} t \sin t, \frac{d y}{d t}=3 \sin ^{2} t \cos t$
6 (c) (i) $x=-1, y=0$
(ii) $a=9, b=4$

