Differentiation \& Applications (Q 6 \& 7, Paper 1)

1998
6
(a) Differentiate (i) $(1+3 x)^{2}$
(ii) $3 e^{4 x+1}$.
(b) Find the value of the constant k if $y=k x^{2}$ is a solution of the equation
$x \frac{d y}{d x}+\frac{1}{2}\left(\frac{d y}{d x}\right)^{2}+y=0$,
where $x \in \mathbf{R}$ and $k \neq 0$.
(c) Given that $f(x)=\frac{x}{x+2}, x \in \mathbf{R}$ and $x \neq 2$,
find the equations of the asymptotes of the graph of $f(x)$.
Prove that the graph of $f(x)$ has no turning points or points of inflection.
Find the range of values of x for which $f^{\prime}(x) \leq 1$, where $f^{\prime}(x)$ is the derivative of $f(x)$.

7 (a) Let $\theta=5 t^{3}-2 t^{2}$,
where t is in seconds and θ is in radians.
Find the rate of change of θ when $t=2$ seconds.
(b) The parametric equations of a curve are
$x=\frac{1+\sin t}{\cos t}, y=\frac{1+\cos t}{\sin t}, 0<t<\frac{\pi}{2}$.
Find $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
Find the slope of the tangent to the curve at the point where $t=\tan ^{-1}\left(\frac{3}{4}\right)$.
(c) Let $f(x)=x^{3}-k x^{2}+8, k \in \mathbf{R}$ and $k>0$.

Show that the coordinates of the local minimum point of $f(x)$ are ($\frac{2 k}{3}, 8-\frac{43^{3}}{27}$).
Taking $x_{1}=3$ as the first approximation of one of the roots of $f(x)=0$, the
Newton-Raphson method gives the second approximation as $x_{2}=\frac{10}{3}$.
Find the value of k.

Answers

6
$\begin{array}{ll}\text { (a) (i) } 6(1+3 x) & \text { (ii) } 12 e^{4 x+1}\end{array}$
(b) $k=-\frac{3}{2}$
(c) $x=-2, y=1 ; x \leq-2-\sqrt{2}, x \geq-2+\sqrt{2}$
7 (a) $52 \mathrm{rads} / \mathrm{s}$
(b) $\frac{d x}{d t}=\frac{1+\sin t}{\cos ^{2} t}, \frac{d y}{d t}=\frac{-1-\cos t}{\sin ^{2} t},-2$
(c) $k=4$

