Differentiation \& Applications (Q 6 \& 7, Paper 1)

1997
6 (a) Differentiate
(i) $x^{3}+2 \sqrt{x}$
(ii) $(x+2) \ln x$.
(b) (i) Find from first principles the derivative of x^{3} with respect to x.
(ii) Let $f(x)=\sin ^{4} x+\cos ^{4} x$.

Find the derivative of $f(x)$ and express it in the form $k \sin p x$, where

$$
k, p \in \mathbf{Z} .
$$

(c) If $\sin y=\frac{1}{2}\left(1-x^{2}\right)$ for $-\sqrt{3}<x<\sqrt{3}$,
calculate the value of a and the value of b when
$\left(\frac{d y}{d x}\right)^{2}=\frac{a}{3-x^{2}}-\frac{b}{1+x^{2}}, a, b \in \mathbf{N}_{0}$.

7 (a) Take $x_{1}=3$ as the first approximation of a real root of the equation $x^{3}-6 x^{2}+24=0$.
Find, using the Newton-Raphson method, x_{2}, the second approximation and write your answer as a fraction.
(b) (i) Find the equation of the tangent to the curve
$2 x^{2}-3 y^{2}=6$
at the point $(-3,-2)$.
(ii) If $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$, find, as a fraction, the value of $\frac{d y}{d x}$ when $t=\frac{3}{4}$.
(c) Let $y=x-1+\frac{1}{x-1}, x \in \mathbf{R}, x \neq 1$.
(i) Find the values of x for which $\frac{d y}{d x}=0$.
(ii) For x real, show that y cannot have a real value between -2 and +2 .

Answers

$6 \quad$ (a) (i) $3 x^{2}+\frac{1}{\sqrt{x}}$
(ii) $\frac{x+2}{x}+\ln x$

7 (a) $\frac{8}{3}$
(b) $x-y+1=0$
(b) (ii) $-\sin 4 x$
(c) (i) $x=0,2$

