DIFFERENTIATION & APPLICATIONS (Q 6 & 7, PAPER 1)

1996

6 (a) Differentiate (i) $\frac{2x}{x+1}$ (ii) $4e^{2x+1}$ (b) (i) Find $\frac{dy}{dx}$ if $y = \ln \sqrt{x^2 + 1}$. (ii) Take $x_1 = 1$ as the first approximation of a real root of the equation $x^{3} - 2 = 0$. Find, using the Newton-Raphson method, x_{2} and x_{3} the second and third approximations. Write your answers as fractions. (c) (i) $x = a(\theta + \sin \theta)$; $y = a(1 - \cos \theta)$ where *a* is a constant. Show y-axis $1 + \left(\frac{dy}{dx}\right)^2 = \sec^2(\frac{\theta}{2}).$ p(ii) [pq] is a chord of the loop of the x-axis curve $y^2 = x^2(6-x)$ so that the chord is parallel to the y-axis. Calculate the maximum value of |pq|. q

(a) Find form first principles the derivative of x^2 with respect to x. 7 (b) The function *f* is defined $f: x \to (x-4)\{(x-3)^2+4\}.$ Find (i) f(3)(ii) the derivative with respect to *x* of the function at x = 3. (iii) the equation of the tangent at (3, f(3)). Show that the tangent and the graph of $x \to f(x)$ will both intersect the x-axis at the same point. (c) (i) Given $\tan y = x$, show $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$ and hence, find $\frac{d}{dx} \tan^{-1} x$. (ii) An astronaut is at a height *x* km above the earth, as shown. He moves vertically away from the earth's surface at a velocity $\frac{dx}{dt}$ of $\frac{r}{5}$ km/h where r is the length of the earth's radius. He observes the angle θ as shown. Express x in terms of r and θ . Hence find $\frac{d\theta}{dt}$ when x = r.

Answers
6 (a) (i)
$$\frac{2}{(x+1)^2}$$
 (ii) $8e^{2x+1}$
(b) (i) $\frac{x}{x^2+1}$ (ii) $x_2 = \frac{4}{3}, x_3 = \frac{91}{72}$
(c) (ii) $8\sqrt{2}$
7 (b) (i) -4 (ii) 4 (iii) $y = 4x - 16$
(c) (i) $\frac{1}{1+x^2}$ (ii) $-\frac{1}{10\sqrt{3}}$