Differentiation \& Applications (Q 6 \& 7, Paper 1)

1996

6 (a) Differentiate
(i) $\frac{2 x}{x+1}$
(ii) $4 e^{2 x+1}$
(b) (i) Find $\frac{d y}{d x}$ if $y=\ln \sqrt{x^{2}+1}$.
(ii) Take $x_{1}=1$ as the first approximation of a real root of the equation $x^{3}-2=0$. Find, using the Newton-Raphson method, x_{2} and x_{3} the second and third approximations. Write your answers as fractions.
(c) (i) $x=a(\theta+\sin \theta) ; y=a(1-\cos \theta)$ where a is a constant. Show
$1+\left(\frac{d y}{d x}\right)^{2}=\sec ^{2}\left(\frac{\theta}{2}\right)$.
(ii) $[p q]$ is a chord of the loop of the curve $y^{2}=x^{2}(6-x)$ so that the chord is parallel to the y-axis. Calculate the maximum value of $|p q|$.

7 (a) Find form first principles the derivative of x^{2} with respect to x.
(b) The function f is defined $f: x \rightarrow(x-4)\left\{(x-3)^{2}+4\right\}$.
Find
(i) $f(3)$
(ii) the derivative with respect to x of the function at $x=3$.
(iii) the equation of the tangent at ($3, f(3)$).

Show that the tangent and the graph of $x \rightarrow f(x)$ will both intersect the x-axis at the same point.
(c) (i) Given tan $y=x$, show $\frac{d y}{d x}=\frac{1}{1+\tan ^{2} y}$ and hence, find $\frac{d}{d x} \tan ^{-1} x$.
(ii) An astronaut is at a height x km above the earth, as shown.

He moves vertically away from the earth's surface at a velocity $\frac{d x}{d t}$ of $\frac{r}{5} \mathrm{~km} / \mathrm{h}$ where r is the length of the earth's radius.
He observes the angle θ as shown.
Express x in terms of r and θ.

Hence find $\frac{d \theta}{d t}$ when $x=r$.

Answers

6 (a) (i) $\frac{2}{(x+1)^{2}}$
(ii) $8 e^{2 x+1}$
(b) (i) $\frac{x}{x^{2}+1}$
(ii) $x_{2}=\frac{4}{3}, x_{3}=\frac{91}{72}$
(c) (ii) $8 \sqrt{2}$

7
(b) (i) -4
(ii) 4
(iii) $y=4 x-16$
(c) (i) $\frac{1}{1+x^{2}}$
(ii) $-\frac{1}{10 \sqrt{3}}$

