COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

2000

3 (a) Given that
$$A = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 1 \\ -5 & -2 \end{pmatrix}$, find $B^{-1}A$.

- 3 (b) (i) Simplify $\left(\frac{-2+3i}{3+2i}\right)$ and hence, find the value of $\left(\frac{-2+3i}{3+2i}\right)^9$ where $i^2=-1$.
 - (ii) Find the two complex numbers a + ib such that $(a+ib)^2 = 15-8i$.
- 3 (c) Use De Moivre's theorem
 - (i) to prove that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$
 - (ii) to express $(-\sqrt{3}-i)^{10}$ in the form $2^n(1-i\sqrt{k})$ where $n, k \in \mathbb{N}$.

SOLUTION

3 (a)

$$B = \begin{pmatrix} 3 & 1 \\ -5 & -2 \end{pmatrix}$$

$$\Rightarrow B^{-1} = \frac{1}{3(-2) - (1)(-5)} \begin{pmatrix} -2 & -1 \\ 5 & 3 \end{pmatrix}$$

$$\Rightarrow B^{-1} = -1 \begin{pmatrix} -2 & -1 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -5 & -3 \end{pmatrix}$$
Remember it like this:
$$A^{-1} = \frac{1}{(ad - bc)}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{(ad - bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \dots 8$$

$$B^{-1}A = \begin{pmatrix} 2 & 1 \\ -5 & -3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -11 & 1 \end{pmatrix}$$

 $\left(\frac{-2+3i}{3+2i}\right)$ [Multiply above and below by the conjugate of the number on the bottom.]

$$= \left(\frac{-2+3i}{3+2i}\right) \left(\frac{3-2i}{3-2i}\right)$$
$$= \frac{-6+4i+9i-6i^2}{13}$$
$$= \frac{13i}{12} = i$$

$$= \frac{13i}{13} = i$$

$$\left(\frac{-2+3i}{3+2i}\right)^9 = i^9 = i$$

If you multiply a+ib by its conjugate a-ib you get a^2+b^2 .

 $i^{\it power}=i^{\it remainder}$ when $\it power$ is divided by 4 Powers of i repeat in groups of four. You always get one of 4 answers: i, -1, -i, 1

3 (b) (ii)

1.
$$\sqrt{15-8i} = a+ib$$

2.
$$15-8i=(a^2-b^2)+2abi$$

3.
$$15 = a^2 - b^2$$
 and $-8 = 2ab \Rightarrow -4 = ab$

4.
$$a = -4$$
, $b = 1$ or $a = 4$, $b = -1$

5.
$$a+ib = \pm (4-i)$$

STEPS

1. Put
$$\sqrt{a+ib} = c+id$$
.

2. Square:
$$a + ib = (c^2 - d^2) + i2cd$$
.

5. There are two answers
$$(\pm)$$
.

3 (c) (i)

STEPS

- 1. Write down De Moivre's Theorem for number in multiple angle.
- **2**. Expand out left-hand side (*LHS*).
- 3. Equate the real parts and the imaginary parts.
- **4**. Tidy up left-hand side using $\cos^2 \theta + \sin^2 \theta$.

$$(\cos\theta \pm i\sin\theta)^n = \cos n\theta \pm i\sin n\theta \qquad$$

 $(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$

$$\Rightarrow \cos^3 \theta + 3\cos^2 \theta (i\sin \theta) + 3\cos \theta (i^2\sin^2 \theta) + i^3\sin^3 \theta = \cos 3\theta + i\sin 3\theta$$

$$\Rightarrow \cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i\sin^3 \theta = \cos 3\theta + i\sin 3\theta$$

$$\Rightarrow \cos^3 \theta - 3\cos\theta \sin^2 \theta + (3\cos^2 \theta \sin\theta - \sin^3 \theta)i = \cos 3\theta + i\sin 3\theta$$

Equate the real parts:

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$
 [Use $\sin^2 \theta = 1 - \cos^2 \theta$]

$$\Rightarrow \cos 3\theta = \cos^3 \theta - 3\cos \theta (1 - \cos^2 \theta)$$

$$\Rightarrow \cos 3\theta = \cos^3 \theta - 3\cos \theta + 3\cos^3 \theta$$

$$\therefore \cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

3 (c) (ii)

CHANGING FROM CARTESIAN TO POLAR

STEPS

1. Find
$$r = |z| = \sqrt{\text{Re}^2 + \text{Im}^2}$$
 first.

- **2**. Draw a free-hand picture to see what quadrant θ is in.
- 3. Find θ from $|\tan \theta| = \frac{|\sin \theta|}{|\sin \theta|}$ and by looking at the picture.

1.
$$r = \sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

2. Draw a picture.

3.
$$\left|\tan\theta\right| = \left|\frac{-1}{-\sqrt{3}}\right| = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{\circ}$$

Angle is in the third quadrant $\Rightarrow \theta = 210^{\circ} = 210^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{7\pi}{6}$

4.
$$z = 2 \left\{ \cos \left(\frac{7\pi}{6} \right) + i \sin \left(\frac{7\pi}{6} \right) \right\}$$

STEPS

- 1. Write complex number in polar form.
- 2. Apply De Moivre's Theorem.
- 3. Change to Cartesian.

1.
$$z = 2\left\{\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right\}$$

2.
$$z^{10} = 2^{10} \left\{ \cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right) \right\}^{10}$$
$$= 2^{10} \left\{ \cos\left(\frac{35\pi}{3}\right) + i\sin\left(\frac{35\pi}{3}\right) \right\}$$

3.
$$z^{10} = 2^{10} \left\{ \cos \left(\frac{5\pi}{3} \right) + i \sin \left(\frac{5\pi}{3} \right) \right\}$$
$$= 2^{10} \left\{ \cos 300^{\circ} + i \sin 300^{\circ} \right\}$$
$$= 2^{10} \left\{ \cos 60^{\circ} - i \sin 60^{\circ} \right\}$$
$$= 2^{10} \left\{ \frac{1}{2} - \frac{\sqrt{3}}{2} i \right\}$$
$$= 2^{9} (1 - \sqrt{3}i)$$

 $(\cos\theta \pm i\sin\theta)^n = \cos n\theta \pm i\sin n\theta$

[Note: You can use your calculator to turn this number into its Cartesian form. Make sure your calculator in Radian mode.]

4