COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

1999

3 (a) If
$$A = \begin{pmatrix} 2 & 1 \\ 5 & 4 \end{pmatrix}$$
, find A^{-1} .

3 (b) (i) Find a quadratic equation whose roots are 3 + i and 3 - i, where $i^2 = -1$.

(ii) Let
$$P(z) = z^3 - kz^2 + 22z - 20$$
, $k \in \mathbb{R}$.

3 + i is a root of the equation P(z) = 0.

Find the value of k.

Find the other two roots of the equation P(z) = 0.

3 (c) (i) Solve for *w*

$$\sqrt{5}|w|+iw=3+i.$$

Write your answers in the form u + iv, u, $v \in \mathbf{R}$.

(ii) Use De Moivre's theorem to find three roots of the equation $z^6 - 1 = 0$.

SOLUTION

3 (a)

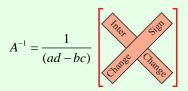
$$A = \begin{pmatrix} 2 & 1 \\ 5 & 4 \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{(2)(4) - (1)(5)} \begin{pmatrix} 4 & -1 \\ -5 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{(ad - bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \dots \dots$$

$$1 \begin{pmatrix} A & -1 \end{pmatrix} \qquad \begin{pmatrix} \frac{4}{3} & -\frac{1}{3} \end{pmatrix} \qquad \text{Parameter it like this}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{(ad - bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \qquad \dots$$

 $=\frac{1}{3}\begin{pmatrix} 4 & -1 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & -\frac{1}{3} \\ -\frac{5}{2} & \frac{2}{3} \end{pmatrix}$

Remember it like this:



3 (b) (i)

Quadratic:
$$x^2 - Sz + P = 0$$

Roots:
$$3+i$$
, $3-i$

Sum S:
$$3+i+3-i=6$$

Product P:
$$(3+i)(3-i) = 10$$

Sum S:
$$\alpha + \beta = -\frac{b}{a} = \frac{-2^{\text{nd.}}}{1^{\text{st.}}}$$
 5

Product P: $\alpha\beta = \frac{c}{a} = \frac{3^{\text{rd.}}}{1^{\text{st.}}}$

Quadratic: $x^2 - 6z + 10 = 0$

Forming a quadratic equation given its roots:

$$x^2 - \mathbf{S}x + \mathbf{P} = 0 \quad$$

3 (b) (ii)

CONJUGATE ROOT TRICK: If z is a root of a polynomial equation with all real coefficients, so is \overline{z} and vice versa.

The coefficients of the cubic equation are real. Therefore, you can apply the conjugate root trick. If 3 + i is a root, then 3 - i is also a root of P(z) = 0.

From part (i), the quadratic equation with these roots is $z^2 - 6z + 10 = 0$.

Therefore, $z^2 - 6z + 10 = 0$ is a factor of P(z).

There are a number of ways to find k. The method shown is the most efficient way. LINING UP:

A cubic expression is the product of a quadratic and a linear factor.

The **first** terms of the linear and quadratics multiply to give the **first** term of the cubic. The **last** terms of the linear and quadratics multiply to give the **last** term of the cubic.

$$z^{3} - kz^{2} + 22z - 20 = (z^{2} - 6z + 10)(z - 2)$$

$$\Rightarrow z^{3} - kz^{2} + 22z - 20 = z^{3} - 8z^{2} + 22z - 10$$

$$\therefore k = 8$$

Roots: 3+i, 3-i, 2

3 (c) (i)

Let w = u + iv

$$\sqrt{5} |w| + iw = 3 + i$$

$$\Rightarrow \sqrt{5} |u + iv| + i(u + iv) = 3 + i$$

$$\Rightarrow \sqrt{5} \sqrt{u^2 + v^2} + iu + i^2v = 3 + i$$

$$|z| = r = \sqrt{x^2 + y^2} = \sqrt{Re^2 + Im^2}$$
 1

$$\Rightarrow \sqrt{5}\sqrt{u^2 + v^2} + iu - v = 3 + i$$

$$\therefore \sqrt{5}\sqrt{u^2+v^2}-v=3$$
 and $iu=i$ For all equations you can equate the real parts and the imaginary parts.

$$\therefore u = 1$$

$$\Rightarrow \sqrt{5}\sqrt{1+v^2} = v+3$$
 [Square both sides.]

$$\Rightarrow$$
 5(1+ v^2) = v^2 + 6 v + 9

$$\Rightarrow 5 + 5v^2 = v^2 + 6v + 9$$

$$\Rightarrow 4v^2 - 6v - 4 = 0$$

$$\Rightarrow 2v^2 - 3v - 2 = 0$$

$$\Rightarrow (2v+1)(v-2) = 0$$

$$\therefore v = -\frac{1}{2}, 2$$

Ans:
$$w = 1 - \frac{1}{2}i$$
, $1 + 2i$

3 (c) (ii)

ROOTS OF COMPLEX NUMBERS: De Moivre's Theorem is used to evaluate fractional powers of complex numbers.

STEPS

- 1. Write the complex number in general polar form.
- 2. Apply De Moivre's Theorem.
- 3. List all roots (start at n = 0) changing nice angles to Cartesian form.

$$z^6 = 1 \Longrightarrow z = (1 + 0i)^{\frac{1}{6}}$$

$$\Rightarrow z = (\cos(0 + 2n\pi) + i\sin(0 + 2n\pi))^{\frac{1}{6}}$$

$$\Rightarrow z = (\cos 2n\pi + i\sin 2n\pi)^{\frac{1}{6}}$$

$$\therefore z = \cos\left(\frac{n\pi}{3}\right) + i\sin\left(\frac{n\pi}{3}\right)$$

$$n = 0 \Rightarrow z_1 = \cos 0^\circ + i \sin 0^\circ = 1$$

$$n = 1 \Rightarrow z_2 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$n=2 \Rightarrow z_3 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$n = 3 \Rightarrow z_4 = \cos(\pi) + i\sin(\pi) = -1$$

$$n = 4 \Rightarrow z_5 = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$n = 5 \Rightarrow z_6 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i$$