Complex Numbers \& Matrices (Q 3, Paper 1)

Lesson No. 5: Matrix Equations

2006

3 (b) (i) Use matrix methods to solve the simultaneous equations

$$
\begin{aligned}
& 4 x-2 y=5 \\
& 8 x+3 y=-4
\end{aligned}
$$

(ii) Find the two values of k which satisfy the matrix equation

$$
\left(\begin{array}{ll}
1 & k
\end{array}\right)\left(\begin{array}{cc}
3 & 4 \\
-2 & 1
\end{array}\right)\binom{1}{k}=11
$$

2004
3 (c) Let $A=\left(\begin{array}{cc}1 & -3 \\ -1 & 2\end{array}\right)$ and $P=\left(\begin{array}{cc}4 & 3 \\ -2 & -1\end{array}\right)$.
(i) Evaluate $A^{-1} P A$ and hence $\left(A^{-1} P A\right)^{10}$.
(ii) Use the fact that $\left(A^{-1} P A\right)^{10}=A^{-1} P^{10} A$ to evaluate P^{10}.

2001
3 (b) (i) Write the simultaneous equations

$$
\begin{aligned}
& x-\sqrt{3} y=-2 \\
& \sqrt{3} x+y=2 \sqrt{3}
\end{aligned}
$$

in the form $A\binom{x}{y}=\binom{-2}{2 \sqrt{3}}$ where A is a 2×2 matrix.
(ii) Then, find A^{-1} and use it to solve the equations for x and y.

Answers

20063 (b) (i) $x=\frac{1}{4}, y=-2$
(ii) $k=-4,2$

20043 (c) (i) $\left(\begin{array}{cc}1 & 0 \\ 0 & 1024\end{array}\right) \quad$ (ii) $\left(\begin{array}{cc}3070 & 3069 \\ -2046 & -2045\end{array}\right)$
20013 (b) (i) $A=\left(\begin{array}{cc}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right) \quad$ (ii) $A^{-1}=\frac{1}{4}\left(\begin{array}{cc}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{array}\right) ; x=1, y=\sqrt{3}$

