COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

LESSON No. 4: MATRIX ALGEBRA

2005

3 (a) Given that $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, show that $A^3 = A^{-1}$.

2003

3 (a) Evaluate
$$\begin{pmatrix} 1 & -2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
.

2002

3 (c) The following three statements are true whenever *x* and *y* are real numbers:

•
$$x + y = y + x$$

•
$$xy = yx$$

• If
$$xy = 0$$
 then either $x = 0$ or $y = 0$.

Investigate whether the statements are also true when x is the matrix $\begin{pmatrix} 3 & -1 \\ -6 & 2 \end{pmatrix}$ and

y is the matrix $\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$.

2001

3 (c) (i) Write
$$(x \ y)\begin{pmatrix} -2 & 3 \\ -4 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}$$
 in the form $ax^2 + bxy + cy^2$ where $a, b, c \in \mathbf{Z}$.

ANSWERS

2001 3 (c) (i)
$$-2x^2 - xy + 5y^2$$