COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

2011

3. (a) Express $\frac{1+2i}{2-i}$ in the form of a + bi, where $i^2 = -1$. (b) (i) Find the two complex numbers such that $(a+bi)^2 = -3+4i$. (ii) Hence solve the equation $x^2 + x + 1 - i = 0$. (c) (i) Let *A* and *B* be 2×2 matrices, where *A* has an inverse. Show that $(A^{-1}BA)^n = A^{-1}B^nA$ for all $n \in \mathbb{N}$. Let $P = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ and $M = \begin{pmatrix} -5 & 3 \\ -10 & 6 \end{pmatrix}$. (ii) Evaluate $P^{-1}MP$ and hence $(P^{-1}MP)^n$.

(iii) Hence, or otherwise, show that $M^n = M$, for all $n \in \mathbb{N}$.

Answers
3 (a)
$$0 + i$$

(b) (i) $\pm (1+2i)$ (ii) $x = -1-i$, i
(c) (ii) $P^{-1}MP = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $(P^{-1}MP)^n = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$