Complex Numbers \& Matrices (Q 3, Paper 1)

2011

3. (a) Express $\frac{1+2 i}{2-i}$ in the form of $a+b i$, where $i^{2}=-1$.
(b) (i) Find the two complex numbers such that

$$
(a+b i)^{2}=-3+4 i
$$

(ii) Hence solve the equation

$$
x^{2}+x+1-i=0
$$

(c) (i) Let A and B be 2×2 matrices, where A has an inverse.

Show that $\left(A^{-1} B A\right)^{n}=A^{-1} B^{n} A$ for all $n \in \mathbb{N}$.
Let $P=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$ and $M=\left(\begin{array}{cc}-5 & 3 \\ -10 & 6\end{array}\right)$.
(ii) Evaluate $P^{-1} M P$ and hence $\left(P^{-1} M P\right)^{n}$.
(iii) Hence, or otherwise, show that $M^{n}=M$, for all $n \in \mathbb{N}$.

Answers

3 (a) $0+i$
$\begin{array}{ll}\text { (b) (i) } \pm(1+2 i) & \text { (ii) } x=-1-i, i\end{array}$
(c) (ii) $P^{-1} M P=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(P^{-1} M P\right)^{n}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

