Complex Numbers \& Matrices (Q 3, Paper 1)

2006

3 (a) Given that $z=2+i$, where $i^{2}=-1$, find the real number d such that $z+\frac{d}{z}$ is real.

3 (b) (i) Use matrix methods to solve the simultaneous equations

$$
\begin{aligned}
& 4 x-2 y=5 \\
& 8 x+3 y=-4
\end{aligned}
$$

(ii) Find the two values of k which satisfy the matrix equation

$$
\left(\begin{array}{ll}
1 & k
\end{array}\right)\left(\begin{array}{cc}
3 & 4 \\
-2 & 1
\end{array}\right)\binom{1}{k}=11
$$

3 (c) (i) Express $-8-8 \sqrt{3} i$ in the form $r(\cos \theta+i \sin \theta)$.
(ii) Hence find $(-8-8 \sqrt{3} i)^{3}$.
(iii) Find the four complex number z such that $z^{4}=-8-8 \sqrt{3}$ i. Give your answers in the form $a+b i$, with a and b fully evaluated.

Answers

3 (a) $d=5$
3 (b) (i) $x=\frac{1}{4}, y=-2$ (ii) $k=-4,2$
3 (c) (i) $16\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$ (ii) 4096
(iii) $1+\sqrt{3} i,-\sqrt{3}+i,-1-\sqrt{3} i, \sqrt{3}-i$

