COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

2006

3 (a) Given that z = 2 + i, where $i^2 = -1$, find the real number d such that $z + \frac{d}{z}$ is real. 3 (b) (i) Use matrix methods to solve the simultaneous equations 4x - 2y = 5 8x + 3y = -4(ii) Find the two values of k which satisfy the matrix equation $(1 \quad k) \begin{pmatrix} 3 & 4 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ k \end{pmatrix} = 11$ 3 (c) (i) Express $-8 - 8\sqrt{3}i$ in the form $r(\cos \theta + i\sin \theta)$. (ii) Hence find $(-8 - 8\sqrt{3}i)^3$.

(iii) Find the four complex number z such that $z^4 = -8 - 8\sqrt{3}i$. Give your answers in the form a + bi, with a and b fully evaluated.

Answers

3 (a) d = 53 (b) (i) $x = \frac{1}{4}$, y = -2 (ii) k = -4, 2 3 (c) (i) $16(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$ (ii) 4096 (iii) $1 + \sqrt{3}i$, $-\sqrt{3} + i$, $-1 - \sqrt{3}i$, $\sqrt{3} - i$