COMPLEX NUMBERS & MATRICES (Q 3, PAPER 1)

2004

- 3 (a) Find the real numbers p and q such that 2(p+iq)+i(p-iq)=5+i, where $i^2=-1$.
- 3 (b) (i) $z_1 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ and $z_2 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$. Evaluate $z_1 z_2$, giving your answer in the form x + iy.
 - (ii) $w_1 = a + ib$ and $w_2 = c + id$. Prove that $\overline{(w_1 w_2)} = (\overline{w_1})(\overline{w_2})$, where \overline{w} is the complex conjugate w.

3 (c) Let
$$A = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix}$$
 and $P = \begin{pmatrix} 4 & 3 \\ -2 & -1 \end{pmatrix}$.

- (i) Evaluate $A^{-1}PA$ and hence $(A^{-1}PA)^{10}$.
- (ii) Use the fact that $(A^{-1}PA)^{10} = A^{-1}P^{10}A$ to evaluate P^{10} .

Answers

3 (a)
$$p = 3$$
, $q = -1$

3 (b) (i)
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

$$3 (c) (i) \begin{pmatrix} 1 & 0 \\ 0 & 1024 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 3070 & 3069 \\ -2046 & -2045 \end{pmatrix}$