Complex Numbers \& Matrices (Q 3, Paper 1)

2002

3 (a) Express $-1+\sqrt{3 i}$ in the form $r(\cos \theta+i \sin \theta)$, where $i^{2}=-1$.
3 (b) (i) Given that $z=2-i \sqrt{3}$, find the real number t such that $z^{2}+t z$ is real.
(ii) w is a complex number such that $w \bar{w}-2 i w=7-4 i$, where \bar{w} is the complex conjugate of w.
Find two possible values of w. Express each in the form $p+q i$, where $p, q \in \mathbf{R}$.
3 (c) The following three statements are true whenever x and y are real numbers:

- $x+y=y+x$
- $x y=y x$
- If $x y=0$ then either $x=0$ or $y=0$.

Investigate whether the statements are also true when x is the matrix $\left(\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right)$ and y is the matrix $\left(\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right)$.

```
Answers
3(a) 2(\operatorname{cos}\frac{2\pi}{3}+i\operatorname{sin}\frac{2\pi}{3})
3 (b) (i) t=-4 (ii) 2-3i, 2+i
```

